Universal Taylor series

From HandWiki

A universal Taylor series is a formal power series [math]\displaystyle{ \sum_{n=1}^\infty a_n x^n }[/math], such that for every continuous function [math]\displaystyle{ h }[/math] on [math]\displaystyle{ [-1,1] }[/math], if [math]\displaystyle{ h(0)=0 }[/math], then there exists an increasing sequence [math]\displaystyle{ \left(\lambda_n\right) }[/math] of positive integers such that[math]\displaystyle{ \lim_{n\to\infty}\left\|\sum_{k=1}^{\lambda_n} a_k x^k-h(x)\right\| = 0 }[/math]In other words, the set of partial sums of [math]\displaystyle{ \sum_{n=1}^\infty a_n x^n }[/math] is dense (in sup-norm) in [math]\displaystyle{ C[-1,1]_0 }[/math], the set of continuous functions on [math]\displaystyle{ [-1,1] }[/math] that is zero at origin.[1]

Statements and proofs

Fekete proved that a universal Taylor series exists.[2]

Lemma — The function [math]\displaystyle{ f(x) = x }[/math] can be approximated to arbitrary precision with a polynomial with arbitrarily lowest degree. That is, [math]\displaystyle{ \forall \epsilon \gt 0, n \in \{1, 2, ...\}\exists }[/math] polynomial [math]\displaystyle{ p(x) = a_nx^n + \cdots + a_N x^N, }[/math] such that [math]\displaystyle{ \|f-p\|_\infty \leq \epsilon }[/math].

References

  1. Mouze, A.; Nestoridis, V. (2010). "Universality and ultradifferentiable functions: Fekete's theorem" (in en). Proceedings of the American Mathematical Society 138 (11): 3945–3955. doi:10.1090/S0002-9939-10-10380-3. ISSN 0002-9939. https://www.ams.org/proc/2010-138-11/S0002-9939-10-10380-3/. 
  2. Pál, Julius (1914). "Zwei kleine Bemerkungen". Tohoku Mathematical Journal. First Series 6: 42–43. https://www.jstage.jst.go.jp/article/tmj1911/6/0/6_0_42/_article/-char/ja/.