Unnormalized modified KdV equation

From HandWiki

The unnormalized modified Korteweg–de Vries (KdV) equation is an integrable nonlinear partial differential equation[1]

[math]\displaystyle{ u_t+u_{xxx}+\alpha u^2 u_x=0 \, }[/math]

where [math]\displaystyle{ \alpha }[/math] is an arbitrary (nonzero) constant. See also Korteweg–de Vries equation.

This is a special case of the Gardner equation.

References

  1. Andrei D. Polyanin, Valentin F. Zaitsev, Handbook of Nonlinear Partial Differential Dquations, second edition p. 870 CRC PRESS
  • Graham W. Griffiths, William E. Shiesser Traveling Wave Analysis of Partial Differential Equations, Academy Press