Unnormalized modified KdV equation
From HandWiki
The unnormalized modified Korteweg–de Vries (KdV) equation is an integrable nonlinear partial differential equation:[1]
- [math]\displaystyle{ u_t+u_{xxx}+\alpha u^2 u_x=0 \, }[/math]
where [math]\displaystyle{ \alpha }[/math] is an arbitrary (nonzero) constant. See also Korteweg–de Vries equation.
This is a special case of the Gardner equation.
References
- ↑ Andrei D. Polyanin, Valentin F. Zaitsev, Handbook of Nonlinear Partial Differential Dquations, second edition p. 870 CRC PRESS
- Graham W. Griffiths, William E. Shiesser Traveling Wave Analysis of Partial Differential Equations, Academy Press
Original source: https://en.wikipedia.org/wiki/Unnormalized modified KdV equation.
Read more |