V-ring (ring theory)
From HandWiki
In mathematics, a V-ring is a ring R such that every simple R-module is injective. The following three conditions are equivalent:[1]
- Every simple left (respectively right) R-module is injective.
- The radical of every left (respectively right) R-module is zero.
- Every left (respectively right) ideal of R is an intersection of maximal left (respectively right) ideals of R.
A commutative ring is a V-ring if and only if it is Von Neumann regular.[2]
References
- ↑ Faith, Carl (1973). Algebra: Rings, modules, and categories. Springer-Verlag. ISBN 978-0387055510. https://books.google.com/books?id=SADvAAAAMAAJ. Retrieved 24 October 2015.
- ↑ Michler, G.O.; Villamayor, O.E. (April 1973). "On rings whose simple modules are injective". Journal of Algebra 25 (1): 185–201. doi:10.1016/0021-8693(73)90088-4.
Original source: https://en.wikipedia.org/wiki/V-ring (ring theory).
Read more |