Vakhitov–Kolokolov stability criterion

From HandWiki

The Vakhitov–Kolokolov stability criterion is a condition for linear stability (sometimes called spectral stability) of solitary wave solutions to a wide class of U(1)-invariant Hamiltonian systems, named after Soviet scientists Aleksandr Kolokolov (Александр Александрович Колоколов) and Nazib Vakhitov (Назиб Галиевич Вахитов). The condition for linear stability of a solitary wave u(x,t)=ϕω(x)eiωt with frequency ω has the form

ddωQ(ω)<0,

where Q(ω) is the charge (or momentum) of the solitary wave ϕω(x)eiωt, conserved by Noether's theorem due to U(1)-invariance of the system.

Original formulation

Originally, this criterion was obtained for the nonlinear Schrödinger equation,

itu(x,t)=2x2u(x,t)+g(|u(x,t)|2)u(x,t),

where x, t, and gC() is a smooth real-valued function. The solution u(x,t) is assumed to be complex-valued. Since the equation is U(1)-invariant, by Noether's theorem, it has an integral of motion, Q(u)=12|u(x,t)|2dx, which is called charge or momentum, depending on the model under consideration. For a wide class of functions g, the nonlinear Schrödinger equation admits solitary wave solutions of the form u(x,t)=ϕω(x)eiωt, where ω and ϕω(x) decays for large x (one often requires that ϕω(x) belongs to the Sobolev space H1(n)). Usually such solutions exist for ω from an interval or collection of intervals of a real line. The Vakhitov–Kolokolov stability criterion,[1][2][3][4]

ddωQ(ϕω)<0,

is a condition of spectral stability of a solitary wave solution. Namely, if this condition is satisfied at a particular value of ω, then the linearization at the solitary wave with this ω has no spectrum in the right half-plane.

This result is based on an earlier work[5] by Vladimir Zakharov.

Generalizations

This result has been generalized to abstract Hamiltonian systems with U(1)-invariance.[6] It was shown that under rather general conditions the Vakhitov–Kolokolov stability criterion guarantees not only spectral stability but also orbital stability of solitary waves.

The stability condition has been generalized[7] to traveling wave solutions to the generalized Korteweg–de Vries equation of the form

tu+x3u+xf(u)=0.

The stability condition has also been generalized to Hamiltonian systems with a more general symmetry group.[8]

See also

References

  1. Колоколов, А. А. (1973). "Устойчивость основной моды нелинейного волнового уравнения в кубичной среде". Прикладная механика и техническая физика (3): 152–155. https://www.sibran.ru/journals/issue.php?ID=156469&ARTICLE_ID=156604. 
  2. A.A. Kolokolov (1973). "Stability of the dominant mode of the nonlinear wave equation in a cubic medium". Journal of Applied Mechanics and Technical Physics 14 (3): 426–428. doi:10.1007/BF00850963. Bibcode1973JAMTP..14..426K. 
  3. Вахитов, Н. Г.; Колоколов, А. А. (1973). "Стационарные решения волнового уравнения в среде с насыщением нелинейности". Известия высших учебных заведений. Радиофизика 16: 1020–1028. 
  4. N.G. Vakhitov; A.A. Kolokolov (1973). "Stationary solutions of the wave equation in the medium with nonlinearity saturation". Radiophys. Quantum Electron. 16 (7): 783–789. doi:10.1007/BF01031343. Bibcode1973R&QE...16..783V. 
  5. Vladimir E. Zakharov (1967). "Instability of Self-focusing of Light". Zh. Eksp. Teor. Fiz. 53: 1735–1743. Bibcode1968JETP...26..994Z. https://www.jetp.ac.ru/cgi-bin/dn/e_026_05_0994.pdf. 
  6. Manoussos Grillakis; Jalal Shatah; Walter Strauss (1987). "Stability theory of solitary waves in the presence of symmetry. I". J. Funct. Anal. 74: 160–197. doi:10.1016/0022-1236(87)90044-9. 
  7. Jerry Bona; Panagiotis Souganidis; Walter Strauss (1987). "Stability and instability of solitary waves of Korteweg-de Vries type". Proceedings of the Royal Society A 411 (1841): 395–412. doi:10.1098/rspa.1987.0073. Bibcode1987RSPSA.411..395B. 
  8. Manoussos Grillakis; Jalal Shatah; Walter Strauss (1990). "Stability theory of solitary waves in the presence of symmetry". J. Funct. Anal. 94 (2): 308–348. doi:10.1016/0022-1236(90)90016-E.