Wald's martingale
In probability theory, Wald's martingale is the name sometimes given to a martingale used to study sums of i.i.d. random variables. It is named after the mathematician Abraham Wald, who used these ideas in a series of influential publications.[1][2][3]
Wald's martingale can be seen as discrete-time equivalent of the Doléans-Dade exponential.
Formal statement
Let [math]\displaystyle{ (X_n)_{n \geq 1} }[/math] be a sequence of i.i.d. random variables whose moment generating function [math]\displaystyle{ M: t \mapsto \mathbb{E}(e^{t X_1}) }[/math] is finite for some [math]\displaystyle{ \theta \gt 0 }[/math], and let [math]\displaystyle{ S_n = X_1 + \cdots + X_n }[/math], with [math]\displaystyle{ S_0 = 1 }[/math]. Then, the process [math]\displaystyle{ (W_n)_{n \geq 0} }[/math] defined by
- [math]\displaystyle{ W_n = \frac{e^{\theta S_n}}{M(\theta)^n} }[/math]
is a martingale known as Wald's martingale.[4] In particular, [math]\displaystyle{ \mathbb{E}(W_n) = 1 }[/math] for all [math]\displaystyle{ n \geq 0 }[/math].
See also
Notes
- ↑ Wald, Abraham (1944). "On cumulative sums of random variables". Ann. Math. Stat. 15 (3): 283–296. doi:10.1214/aoms/1177731235.
- ↑ Wald, Abraham (1945). "Sequential tests of statistical hypotheses". Ann. Math. Stat. 16 (2): 117–186. doi:10.1214/aoms/1177731118.
- ↑ Wald, Abraham (1945). Sequential analysis (1st ed.). John Wiley and Sons.
- ↑ Gamarnik, David (2013). "Advanced Stochastic Processes, Lecture 10". https://ocw.mit.edu/courses/15-070j-advanced-stochastic-processes-fall-2013.
Original source: https://en.wikipedia.org/wiki/Wald's martingale.
Read more |