Wave maps equation

From HandWiki

In mathematical physics, the wave maps equation is a geometric wave equation that solves

[math]\displaystyle{ D^\alpha \partial_\alpha u = 0 }[/math]

where [math]\displaystyle{ D }[/math] is a connection.[1][2]

It can be considered a natural extension of the wave equation for Riemannian manifolds.[3]

References

  1. Tataru, Daniel (1 January 2005). "Rough solutions for the wave maps equation". American Journal of Mathematics 127 (2): 293–377. doi:10.1353/ajm.2005.0014. 
  2. Tataru, Daniel (2004). "The wave maps equation". Bulletin of the American Mathematical Society. New Series 41 (2): 185–204. doi:10.1090/S0273-0979-04-01005-5. http://www.ams.org/journals/bull/2004-41-02/S0273-0979-04-01005-5/S0273-0979-04-01005-5.pdf. 
  3. Tao, Terence. "Wave Maps (preprint)". https://www.math.ucla.edu/~tao/preprints/wavemaps.pdf.