Weakly symmetric space
From HandWiki
Short description: Geometry notion in mathematics
In mathematics, a weakly symmetric space is a notion introduced by the Norwegian mathematician Atle Selberg in the 1950s as a generalisation of symmetric space, due to Élie Cartan. Geometrically the spaces are defined as complete Riemannian manifolds such that any two points can be exchanged by an isometry, the symmetric case being when the isometry is required to have period two. The classification of weakly symmetric spaces relies on that of periodic automorphisms of complex semisimple Lie algebras. They provide examples of Gelfand pairs, although the corresponding theory of spherical functions in harmonic analysis, known for symmetric spaces, has not yet been developed.
References
- Akhiezer, D. N.; Vinberg, E. B. (1999), "Weakly symmetric spaces and spherical varieties", Transf. Groups 4: 3–24, doi:10.1007/BF01236659
- Helgason, Sigurdur (1978), Differential geometry, Lie groups and symmetric spaces, Academic Press, ISBN 0-12-338460-5
- Kac, V. G. (1990), Infinite dimensional Lie algebras (3rd ed.), Cambridge University Press, ISBN 0-521-46693-8
- Kobayashi, Toshiyuki (2002). "Branching problems of unitary representations". Proceedings of the International Congress of Mathematicians, Vol. II. Beijing: Higher Ed. Press. pp. 615–627.
- Kobayashi, Toshiyuki (2004), "Geometry of multiplicity-free representations of GL(n), visible actions on flag varieties, and triunity", Acta Appl. Math. 81: 129–146, doi:10.1023/B:ACAP.0000024198.46928.0c, https://cds.cern.ch/record/710734
- Kobayashi, Toshiyuki (2007), "A generalized Cartan decomposition for the double coset space (U(n1)×U(n2)×U(n3))\U(n)/(U(p)×U(q))", J. Math. Soc. Jpn. 59: 669–691
- Krämer, Manfred (1979), "Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen" (in de), Compositio Mathematica 38: 129–153
- Matsuki, Toshihiko (1991), "Orbits on flag manifolds", Proceedings of the International Congress of Mathematicians, Vol. II, 1990 Kyoto, Math. Soc. Japan, pp. 807–813
- Matsuki, Toshihiko (2013), "An example of orthogonal triple flag variety of finite type", J. Algebra 375: 148–187, doi:10.1016/j.jalgebra.2012.11.012
- Mikityuk, I. V. (1987), "On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces", Math. USSR Sbornik 57 (2): 527–546, doi:10.1070/SM1987v057n02ABEH003084, Bibcode: 1987SbMat..57..527M
- Selberg, A. (1956), "Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces, with applications to Dirichlet series", J. Indian Math. Society 20: 47–87
- Stembridge, J. R. (2001), "Multiplicity-free products of Schur functions", Annals of Combinatorics 5 (2): 113–121, doi:10.1007/s00026-001-8008-6
- Stembridge, J. R. (2003), "Multiplicity-free products and restrictions of Weyl characters", Representation Theory 7 (18): 404–439, doi:10.1090/S1088-4165-03-00150-X
- Vinberg, É. B. (2001), "Commutative homogeneous spaces and co-isotropic symplectic actions", Russian Math. Surveys 56 (1): 1–60, doi:10.1070/RM2001v056n01ABEH000356, Bibcode: 2001RuMaS..56....1V
- Wolf, J. A.; Gray, A. (1968), "Homogeneous spaces defined by Lie group automorphisms. I, II", Journal of Differential Geometry 2: 77–114, 115–159
- Wolf, J. A. (2007), Harmonic Analysis on Commutative Spaces, American Mathematical Society, ISBN 978-0-8218-4289-8
- Ziller, Wolfgang (1996), "Weakly symmetric spaces", Topics in geometry, Progr. Nonlinear Differential Equations Appl., 20, Boston: Birkhäuser, pp. 355–368
Original source: https://en.wikipedia.org/wiki/Weakly symmetric space.
Read more |