Weil–Petersson metric
In mathematics, the Weil–Petersson metric is a Kähler metric on the Teichmüller space Tg,n of genus g Riemann surfaces with n marked points. It was introduced by André Weil (1958, 1979) using the Petersson inner product on forms on a Riemann surface (introduced by Hans Petersson).
Definition
If a point of Teichmüller space is represented by a Riemann surface R, then the cotangent space at that point can be identified with the space of quadratic differentials at R. Since the Riemann surface has a natural hyperbolic metric, at least if it has negative Euler characteristic, one can define a Hermitian inner product on the space of quadratic differentials by integrating over the Riemann surface. This induces a Hermitian inner product on the tangent space to each point of Teichmüller space, and hence a Riemannian metric.
Properties
(Weil 1958) stated, and (Ahlfors 1961) proved, that the Weil–Petersson metric is a Kähler metric. (Ahlfors 1961b) proved that it has negative holomorphic sectional, scalar, and Ricci curvatures. The Weil–Petersson metric is usually not complete.
Generalizations
The Weil–Petersson metric can be defined in a similar way for some moduli spaces of higher-dimensional varieties.
See also
References
- Ahlfors, Lars V. (1961), "Some remarks on Teichmüller's space of Riemann surfaces", Annals of Mathematics, Second Series 74 (1): 171–191, doi:10.2307/1970309
- Ahlfors, Lars V. (1961b), "Curvature properties of Teichmüller's space", Journal d'Analyse Mathématique 9: 161–176, doi:10.1007/BF02795342
- Weil, André (1958), "Modules des surfaces de Riemann" (in French), Séminaire Bourbaki; 10e année: 1957/1958. Textes des conférences; Exposés 152à 168; 2e éd.corrigée, Exposé 168, Paris: Secrétariat Mathématique, pp. 413–419
- Weil, André (1979), "On the moduli of Riemann surfaces", Scientific works. Collected papers. Vol. II (1951--1964), Berlin, New York: Springer-Verlag, pp. 381–389, ISBN 978-0-387-90330-9, https://books.google.com/books?id=iYiiD9oKnBUC
- Hazewinkel, Michiel, ed. (2001), "Weil–Petersson_metric", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=Weil–Petersson_metric
- Wolpert, Scott A. (2009), "The Weil-Petersson metric geometry", in Papadopoulos, Athanase, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., 13, Eur. Math. Soc., Zürich, pp. 47–64, doi:10.4171/055-1/2, ISBN 978-3-03719-055-5
- Wolpert, Scott A. (2010), Families of Riemann Surfaces and Weil-Petersson Geometry, CBMS Reg. Conf. Series in Math., 113, Amer. Math. Soc., Providence, Rhode Island, doi:10.1090/cbms/113, ISBN 978-0-8218-4986-6, http://www.ams.org/bookstore-getitem/item=cbms-113
Original source: https://en.wikipedia.org/wiki/Weil–Petersson metric.
Read more |