Well equidistributed long-period linear

From HandWiki
Short description: Family of pseudorandom number generators

The Well Equidistributed Long-period Linear (WELL) is a family of pseudorandom number generators developed in 2006 by François Panneton, Pierre L'Ecuyer, and Makoto Matsumoto [ja] (松本 眞).[1] It is a form of linear-feedback shift register optimized for software implementation on a 32-bit machine.

Operational design

The structure is similar to the Mersenne Twister, a large state made up of previous output words (32 bits each), from which a new output word is generated using linear recurrences modulo 2 over a finite binary field [math]\displaystyle{ F_2 }[/math]. However, a more complex recurrence produces a denser generator polynomial, producing better statistical properties.

Each step of the generator reads five words of state: the oldest 32 bits (which may straddle a word boundary if the state size is not a multiple of 32), the newest 32 bits, and three other words in between.

Then a series of eight single-word transformations (mostly of the form [math]\displaystyle{ x:= x\oplus(x\gg k) }[/math] and six exclusive-or operations combine those into two words, which become the newest two words of state, one of which will be the output.

Variants

Specific parameters are provided for the following generators:

  • WELL512a
  • WELL521a, WELL521b
  • WELL607a, WELL607b
  • WELL800a, WELL800b
  • WELL1024a, WELL1024b
  • WELL19937a, WELL19937b, WELL19937c
  • WELL21701a
  • WELL23209a, WELL23209b
  • WELL44497a, WELL44497b.

Numbers give the state size in bits; letter suffixes denote variants of the same size.

Implementations

References

  1. Panneton, François O.; l'Ecuyer, Pierre; Matsumoto, Makoto (March 2006). "Improved long-period generators based on linear recurrences modulo 2". ACM Transactions on Mathematical Software 32 (1): 1–16. doi:10.1145/1132973.1132974. http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf. 

External links