Wilson polynomials
From HandWiki
In mathematics, Wilson polynomials are a family of orthogonal polynomials introduced by James A. Wilson (1980) that generalize Jacobi polynomials, Hahn polynomials, and Charlier polynomials.
They are defined in terms of the generalized hypergeometric function and the Pochhammer symbols by
- [math]\displaystyle{ p_n(t^2)=(a+b)_n(a+c)_n(a+d)_n {}_4F_3\left( \begin{matrix} -n&a+b+c+d+n-1&a-t&a+t \\ a+b&a+c&a+d \end{matrix} ;1\right). }[/math]
See also
- Askey–Wilson polynomials are a q-analogue of Wilson polynomials.
References
- Wilson, James A. (1980), "Some hypergeometric orthogonal polynomials", SIAM Journal on Mathematical Analysis 11 (4): 690–701, doi:10.1137/0511064, ISSN 0036-1410
- Hazewinkel, Michiel, ed. (2001), "Wilson polynomials", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=Wilson_polynomials
Original source: https://en.wikipedia.org/wiki/Wilson polynomials.
Read more |