Wolfe duality

From HandWiki

In mathematical optimization, Wolfe duality, named after Philip Wolfe, is type of dual problem in which the objective function and constraints are all differentiable functions. Using this concept a lower bound for a minimization problem can be found because of the weak duality principle.[1]

Mathematical formulation

For a minimization problem with inequality constraints,

[math]\displaystyle{ \begin{align} &\underset{x}{\operatorname{minimize}}& & f(x) \\ &\operatorname{subject\;to} & &g_i(x) \leq 0, \quad i = 1,\dots,m \end{align} }[/math]

the Lagrangian dual problem is

[math]\displaystyle{ \begin{align} &\underset{u}{\operatorname{maximize}}& & \inf_x \left(f(x) + \sum_{j=1}^m u_j g_j(x)\right) \\ &\operatorname{subject\;to} & &u_i \geq 0, \quad i = 1,\dots,m \end{align} }[/math]

where the objective function is the Lagrange dual function. Provided that the functions [math]\displaystyle{ f }[/math] and [math]\displaystyle{ g_1, \ldots, g_m }[/math] are convex and continuously differentiable, the infimum occurs where the gradient is equal to zero. The problem

[math]\displaystyle{ \begin{align} &\underset{x, u}{\operatorname{maximize}}& & f(x) + \sum_{j=1}^m u_j g_j(x) \\ &\operatorname{subject\;to} & & \nabla f(x) + \sum_{j=1}^m u_j \nabla g_j(x) = 0 \\ &&&u_i \geq 0, \quad i = 1,\dots,m \end{align} }[/math]

is called the Wolfe dual problem.[2] This problem employs the KKT conditions as a constraint. Also, the equality constraint [math]\displaystyle{ \nabla f(x) + \sum_{j=1}^m u_j \nabla g_j(x) }[/math] is nonlinear in general, so the Wolfe dual problem may be a nonconvex optimization problem. In any case, weak duality holds.[3]

See also

  • Lagrangian duality
  • Fenchel duality

References

  1. Philip Wolfe (1961). "A duality theorem for non-linear programming". Quarterly of Applied Mathematics 19 (3): 239–244. doi:10.1090/qam/135625. 
  2. "Chapter 3. Duality in convex optimization". October 30, 2011. http://wwwhome.math.utwente.nl/~stillgj/conopt/chap3.pdf. Retrieved May 20, 2012. 
  3. Geoffrion, Arthur M. (1971). "Duality in Nonlinear Programming: A Simplified Applications-Oriented Development". SIAM Review 13 (1): 1–37. doi:10.1137/1013001.