Zerosumfree monoid
From HandWiki
In abstract algebra, an additive monoid [math]\displaystyle{ (M, 0, +) }[/math] is said to be zerosumfree, conical, centerless or positive if nonzero elements do not sum to zero. Formally:
- [math]\displaystyle{ (\forall a,b\in M)\ a + b = 0 \implies a = b = 0 \! }[/math]
This means that the only way zero can be expressed as a sum is as [math]\displaystyle{ 0 + 0 }[/math].
References
- Wehrung, Friedrich (1996). "Tensor products of structures with interpolation". Pacific Journal of Mathematics 176 (1): 267–285. doi:10.2140/pjm.1996.176.267. http://projecteuclid.org/euclid.pjm/1102352063.
Original source: https://en.wikipedia.org/wiki/Zerosumfree monoid.
Read more |