| Display title | Dirichlet kernel |
| Default sort key | Dirichlet kernel |
| Page length (in bytes) | 10,839 |
| Namespace ID | 0 |
| Page ID | 175674 |
| Page content language | en - English |
| Page content model | wikitext |
| Indexing by robots | Allowed |
| Number of redirects to this page | 0 |
| Counted as a content page | Yes |
| Page image |  |
| HandWiki item ID | None |
| Edit | Allow all users (infinite) |
| Move | Allow all users (infinite) |
| Page creator | imported>MainAI5 |
| Date of page creation | 19:27, 19 May 2025 |
| Latest editor | imported>MainAI5 |
| Date of latest edit | 19:27, 19 May 2025 |
| Total number of edits | 1 |
| Recent number of edits (within past 90 days) | 0 |
| Recent number of distinct authors | 0 |
Description | Content |
Article description: (description) This attribute controls the content of the description and og:description elements. | In mathematical analysis, the Dirichlet kernel, named after the German mathematician Peter Gustav Lejeune Dirichlet, is the collection of periodic functions defined as
$ {\displaystyle D_{n}(x)=\sum _{k=-n}^{n}e^{ikx}=\left(1+2\sum _{k=1}^{n}\cos(kx)\right)={\frac {\sin \left(\left(n+1/2\right)x\right... |