Software:Sim4Life: Difference between revisions

From HandWiki
No edit summary
 
(import)
 
Line 1: Line 1:
{{Short description|Computational life sciences simulation software }}
{{Infobox Software
'''Sim4Life''' is a computer-aided-design-based simulation platform that combines [[Physics:Computational human phantom|computational human phantom]]<nowiki/>s with physics solvers and models of [[Biology:Tissue|biological tissues]] and [[Medicine:Medical device|medical devices]]. Sim4Life, which is marketed by ZMT Zurich MedTech, is used by medical researchers to investigate, for example, safety aspects of [[Physics:Magnetic resonance imaging|magnetic resonance imaging]],<ref>{{Cite journal |date=26 August 2020 |title=An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head |url=https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28467 |journal=Magnetic Resonance in Medicine |volume=85 |issue=2 |pages=1114-1122 |via=Wiley Online Library}}</ref> <ref>{{Cite journal |date=13 January 2021 |title=Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806143/ |journal=PLoS One |volume=16 |issue=1 |pages=e0241682 |via=Creative Commons CC0}}</ref> [[Medicine:Non-invasive procedure|non-invasive]] methods of brain stimulation,<ref>{{Cite journal |date=23 September 2022 |title=Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study |url=https://iopscience.iop.org/article/10.1088/1741-2552/ac9085/pdf |journal=Journal of Neural Engineering |volume=19 |pages=056020 |via=IOP Publishing}}</ref> and transcranial [[Physics:Focused ultrasound|focused ultrasound]].<ref>{{Cite journal |date=February 3, 2022 |title=Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study |url=https://www.neuromodulationjournal.org/article/S1094-7159(21)06990-7/fulltext |journal=Neuromodulation: Technology at the Neural Interface |volume=25 |issue=4 |pages=606–613 |via=Elsevier Inc.}}</ref><br />
| name = Sim4Life
| logo =
| logo size =
| developer = ZMT Zurich MedTech AG
| latest_release_version = V8.0
| latest_release_date = {{Start date and age|2024|03|14}}
| genre = Computer-aided design
| website = {{URL|https://zmt.swiss/sim4life/}}
}}
 
'''Sim4Life''' is a [[Engineering:Computer-aided design|computer-aided-design]]-based simulation platform developed by the Foundation for Research on Information Technologies in Society (IT'IS) with funding from  Innosuisse<ref>{{Cite web |date=27 November 2014 |title=Development of a Multiphysics Simulation Platform for Computational BioMed and Life Sciences (Sim4Life) |url=https://www.aramis.admin.ch/Grunddaten/?ProjectID=28397 |access-date=17 March 2024 |website=ARAMIS}}</ref><ref>{{Cite web |date=1 June 2015 |title=R and D project : S4L-CAPITALIS - Extension of the Sim4Life Platform (S4L) for Analysis and Optimization of the Neurovascular and Neurological Devices and Treatments in the Head |url=https://www.aramis.admin.ch/Texte/?ProjectID=34223&Sprache=en-US |access-date=17 March 2024 |website=ARAMIS}}</ref>, formerly known as CTI, the Swiss federal innovation agency. The platform combines [[Physics:Computational human phantom|computational human phantoms]] with physics solvers and models of [[Biology:Tissue|biological tissues]] and [[Medicine:Medical device|medical devices]]. Sim4Life marketed by IT'IS partner ZMT Zurich MedTech AG (ZMT) and SPECTRAtech<ref>{{Cite web |date=2024 |title=Sim4Life T-NEURO {{!}} Neuronal Tissue Models |url=https://www.spectratech.gr/en/product/51383/Sim4Life_T-NEURO?path=00 |access-date=17 March 2024 |website=SPECTRAtech}}</ref> – is used by medical researchers to investigate, for example, safety aspects of [[Physics:Magnetic resonance imaging|magnetic resonance imaging]],<ref>{{Cite journal |date=2021 |title=An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head |url=https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28467 |journal=Magnetic Resonance in Medicine |volume=85 |issue=2 |pages=1114–1122 |doi=10.1002/mrm.28467 |via=Wiley Online Library |last1=De Buck |first1=Matthijs H. S. |last2=Jezzard |first2=Peter |last3=Jeong |first3=Hongbae |last4=Hess |first4=Aaron T. |pmid=32845034 }}</ref><ref>{{Cite journal |date=13 January 2021 |title=Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model |journal=PLOS ONE |volume=16 |issue=1 |pages=e0241682 |pmc=7806143 |last1=Jeong |first1=H. |last2=Ntolkeras |first2=G. |last3=Alhilani |first3=M. |last4=Atefi |first4=S. R. |last5=Zöllei |first5=L. |last6=Fujimoto |first6=K. |last7=Pourvaziri |first7=A. |last8=Lev |first8=M. H. |last9=Grant |first9=P. E. |last10=Bonmassar |first10=G. |doi=10.1371/journal.pone.0241682 |pmid=33439896 |doi-access=free |bibcode=2021PLoSO..1641682J }}</ref><ref>{{Cite journal |date=2021 |title=Real-time assessment of potential peak local specific absorption rate value without phase monitoring: Trigonometric maximization method for worst-case local specific absorption rate determination |journal=Magnetic Resonance in Medicine |volume=85 |issue=6 |pages=3420–3433 |doi=10.1002/mrm.28635 |last1=Meliadò |first1=Ettore Flavio |last2=Sbrizzi |first2=Alessandro |last3=Van Den Berg |first3=Cornelis A. T. |last4=Luijten |first4=Peter R. |last5=Raaijmakers |first5=Alexander J. E. |pmid=33350525 |pmc=7986921 }}</ref> [[Medicine:Non-invasive procedure|non-invasive]] methods of brain stimulation,<ref>{{Cite journal |date=23 September 2022 |title=Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study |url=https://iopscience.iop.org/article/10.1088/1741-2552/ac9085/pdf |journal=Journal of Neural Engineering |volume=19 |pages=056020 |doi=10.1088/1741-2552/ac9085 |via=IOP Publishing |last1=Fiocchi |first1=Serena |last2=Chiaramello |first2=Emma |last3=Marrella |first3=Alessandra |last4=Bonato |first4=Marta |last5=Parazzini |first5=Marta |last6=Ravazzani |first6=Paolo |issue=5 |pmid=36075197 |bibcode=2022JNEng..19e6020F }}</ref><ref>{{Cite journal |date=2 February 2022 |title=Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation |journal=Scientific Reports |volume=12 |pages=1763 |doi=10.1038/s41598-022-04868-x |pmid=35110567 |bibcode=2022NatSR..12.1763G |last1=Gudvangen |first1=Emily |last2=Kim |first2=Vitalii |last3=Novickij |first3=Vitalij |last4=Battista |first4=Federico |last5=Pakhomov |first5=Andrei G. |issue=1 |pmc=8811018 }}</ref> and transcranial [[Physics:Focused ultrasound|focused ultrasound]].<ref>{{Cite journal |date=February 3, 2022 |title=Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study |url=https://www.neuromodulationjournal.org/article/S1094-7159(21)06990-7/fulltext |journal=Neuromodulation: Technology at the Neural Interface |volume=25 |issue=4 |pages=606–613 |doi=10.1016/j.neurom.2021.12.012 |pmid=35125300 |via=Elsevier Inc. |last1=Truong |first1=D. Q. |last2=Thomas |first2=C. |last3=Hampstead |first3=B. M. |last4=Datta |first4=A. }}</ref><ref>{{Cite journal |date=August 2022 |title=Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus |url=https://www.sciencedirect.com/science/article/abs/pii/S0041624X22000373 |journal=Ultrasonics |volume=124 |pages=106724 |doi=10.1016/j.ultras.2022.106724 |pmid=35299039 |via=Elsevier Science Direct |last1=Huang |first1=Y. |last2=Wen |first2=P. |last3=Song |first3=B. |last4=Li |first4=Y. |s2cid=247423819 }}</ref> The current version of Sim4Life, V8.0, is also available as Sim4Life.web, which is integrated with the desktop version and implemented in the cloud for use without installation.
 
''S4L<sup>lite</sup>'' is a web version of Sim4Life free-of-charge for students to facilitate team-learning and online collaboration on limited size projects with classmates and teachers. ''S4L<sup>lite</sup>''  is powered by o²S²PARC<ref>{{Cite journal |date=24 June 2021 |title=The SPARC DRC: Building a Resource for the Autonomic Nervous System Community |journal=Frontiers in Physiology |volume=12 |pages=693735 |doi=10.3389/fphys.2021.693735 |doi-access=free |last1=Osanlouy |first1=Mahyar |last2=Bandrowski |first2=Anita |last3=De Bono |first3=Bernard |last4=Brooks |first4=David |last5=Cassarà |first5=Antonino M. |last6=Christie |first6=Richard |last7=Ebrahimi |first7=Nazanin |last8=Gillespie |first8=Tom |last9=Grethe |first9=Jeffrey S. |last10=Guercio |first10=Leonardo A. |last11=Heal |first11=Maci |last12=Lin |first12=Mabelle |last13=Kuster |first13=Niels |last14=Martone |first14=Maryann E. |last15=Neufeld |first15=Esra |last16=Nickerson |first16=David P. |last17=Soltani |first17=Elias G. |last18=Tappan |first18=Susan |last19=Wagenaar |first19=Joost B. |last20=Zhuang |first20=Katie |last21=Hunter |first21=Peter J. |pmid=34248680 |pmc=8265045 }}</ref>, which was developed as part of the 'Stimulating Peripheral Activity to Relieve Conditions' (SPARC)<ref>{{Cite web |date=15 February 2023 |title=The SPARC computational modeling platform o²S²PARC now powers ZMT's S4Llite |url=https://sparc.science/news-and-events/news/5U9a8F2TgWKDiFH6Cyw51i |access-date=17 March 2024 |website=SPARC — bridging the body and the brain}}</ref> program of the [[Organization:National Institutes of Health Common Fund|National Institutes of Health Common Fund]].


== References ==
== References ==
Line 7: Line 19:


== External links[edit] ==
== External links[edit] ==
[https://zmt.swiss/sim4life/ ZMT Zurich MedTech AG website]
[https://zmt.swiss/sim4life/ ZMT Zurich MedTech AG website, Sim4Life webpage]
 
[https://zmt.swiss/s4l/ ZMT Zurich MedTech AG website, ''S4L<sup>lite</sup>'' webpage]
{{Sourceattribution|Sim4Life}}
{{Sourceattribution|Sim4Life}}
[[Category:Simulation software]]

Latest revision as of 20:27, 20 March 2024

Sim4Life
Developer(s)ZMT Zurich MedTech AG
Stable release
V8.0 / March 14, 2024; 4 months ago (2024-03-14)
TypeComputer-aided design
Websitezmt.swiss/sim4life/

Sim4Life is a computer-aided-design-based simulation platform developed by the Foundation for Research on Information Technologies in Society (IT'IS) with funding from Innosuisse[1][2], formerly known as CTI, the Swiss federal innovation agency. The platform combines computational human phantoms with physics solvers and models of biological tissues and medical devices. Sim4Life – marketed by IT'IS partner ZMT Zurich MedTech AG (ZMT) and SPECTRAtech[3] – is used by medical researchers to investigate, for example, safety aspects of magnetic resonance imaging,[4][5][6] non-invasive methods of brain stimulation,[7][8] and transcranial focused ultrasound.[9][10] The current version of Sim4Life, V8.0, is also available as Sim4Life.web, which is integrated with the desktop version and implemented in the cloud for use without installation.

S4Llite is a web version of Sim4Life free-of-charge for students to facilitate team-learning and online collaboration on limited size projects with classmates and teachers. S4Llite is powered by o²S²PARC[11], which was developed as part of the 'Stimulating Peripheral Activity to Relieve Conditions' (SPARC)[12] program of the National Institutes of Health Common Fund.

References

  1. "Development of a Multiphysics Simulation Platform for Computational BioMed and Life Sciences (Sim4Life)". 27 November 2014. https://www.aramis.admin.ch/Grunddaten/?ProjectID=28397. 
  2. "R and D project : S4L-CAPITALIS - Extension of the Sim4Life Platform (S4L) for Analysis and Optimization of the Neurovascular and Neurological Devices and Treatments in the Head". 1 June 2015. https://www.aramis.admin.ch/Texte/?ProjectID=34223&Sprache=en-US. 
  3. "Sim4Life T-NEURO | Neuronal Tissue Models". 2024. https://www.spectratech.gr/en/product/51383/Sim4Life_T-NEURO?path=00. 
  4. De Buck, Matthijs H. S.; Jezzard, Peter; Jeong, Hongbae; Hess, Aaron T. (2021). "An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head". Magnetic Resonance in Medicine 85 (2): 1114–1122. doi:10.1002/mrm.28467. PMID 32845034. https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28467. 
  5. Jeong, H.; Ntolkeras, G.; Alhilani, M.; Atefi, S. R.; Zöllei, L.; Fujimoto, K.; Pourvaziri, A.; Lev, M. H. et al. (13 January 2021). "Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model". PLOS ONE 16 (1): e0241682. doi:10.1371/journal.pone.0241682. PMID 33439896. Bibcode2021PLoSO..1641682J. 
  6. Meliadò, Ettore Flavio; Sbrizzi, Alessandro; Van Den Berg, Cornelis A. T.; Luijten, Peter R.; Raaijmakers, Alexander J. E. (2021). "Real-time assessment of potential peak local specific absorption rate value without phase monitoring: Trigonometric maximization method for worst-case local specific absorption rate determination". Magnetic Resonance in Medicine 85 (6): 3420–3433. doi:10.1002/mrm.28635. PMID 33350525. 
  7. Fiocchi, Serena; Chiaramello, Emma; Marrella, Alessandra; Bonato, Marta; Parazzini, Marta; Ravazzani, Paolo (23 September 2022). "Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study". Journal of Neural Engineering 19 (5): 056020. doi:10.1088/1741-2552/ac9085. PMID 36075197. Bibcode2022JNEng..19e6020F. https://iopscience.iop.org/article/10.1088/1741-2552/ac9085/pdf. 
  8. Gudvangen, Emily; Kim, Vitalii; Novickij, Vitalij; Battista, Federico; Pakhomov, Andrei G. (2 February 2022). "Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation". Scientific Reports 12 (1): 1763. doi:10.1038/s41598-022-04868-x. PMID 35110567. Bibcode2022NatSR..12.1763G. 
  9. Truong, D. Q.; Thomas, C.; Hampstead, B. M.; Datta, A. (February 3, 2022). "Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study". Neuromodulation: Technology at the Neural Interface 25 (4): 606–613. doi:10.1016/j.neurom.2021.12.012. PMID 35125300. https://www.neuromodulationjournal.org/article/S1094-7159(21)06990-7/fulltext. 
  10. Huang, Y.; Wen, P.; Song, B.; Li, Y. (August 2022). "Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus". Ultrasonics 124: 106724. doi:10.1016/j.ultras.2022.106724. PMID 35299039. https://www.sciencedirect.com/science/article/abs/pii/S0041624X22000373. 
  11. Osanlouy, Mahyar; Bandrowski, Anita; De Bono, Bernard; Brooks, David; Cassarà, Antonino M.; Christie, Richard; Ebrahimi, Nazanin; Gillespie, Tom et al. (24 June 2021). "The SPARC DRC: Building a Resource for the Autonomic Nervous System Community". Frontiers in Physiology 12: 693735. doi:10.3389/fphys.2021.693735. PMID 34248680. 
  12. "The SPARC computational modeling platform o²S²PARC now powers ZMT's S4Llite". 15 February 2023. https://sparc.science/news-and-events/news/5U9a8F2TgWKDiFH6Cyw51i. 

External links[edit]

ZMT Zurich MedTech AG website, Sim4Life webpage

ZMT Zurich MedTech AG website, S4Llite webpage