Module of covariants
From HandWiki
Revision as of 02:28, 8 March 2021 by imported>OrgMain (correction)
In algebra, given an algebraic group G, a G-module M and a G-algebra A, all over a field k, the module of covariants of type M is the [math]\displaystyle{ A^G }[/math]-module
- [math]\displaystyle{ (M \otimes_k A)^G. }[/math]
where [math]\displaystyle{ -^G }[/math] refers to taking the elements fixed by the action of G; thus, [math]\displaystyle{ A^G }[/math] is the ring of invariants of A.
See also
References
- M. Brion, Sur les modules de covariants, Ann. Sci. École Norm. Sup. (4) 26 (1993), 1 21.
- M. Van den Bergh, Modules of covariants, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), Birkhauser, Basel, pp. 352–362, 1995.
Original source: https://en.wikipedia.org/wiki/Module of covariants.
Read more |