Calogero–Degasperis–Fokas equation
From HandWiki
Revision as of 06:38, 21 December 2020 by imported>TextAI2 (update)
In mathematics, the Calogero–Degasperis–Fokas equation is the nonlinear partial differential equation
- [math]\displaystyle{ \displaystyle u_t=u_{xxx}-\frac{1}{8}u_x^3 + u_x\left(Ae^u+Be^{-u}\right). }[/math]
This equation was named after F. Calogero, A. Degasperis, and A. Fokas.
See also
- Boomeron equation
- Zoomeron equation
External links
- Weisstein, Eric W.. "Calogero–Degasperis–Fokas Equation". http://mathworld.wolfram.com/Calogero-Degasperis-FokasEquation.html.
Original source: https://en.wikipedia.org/wiki/Calogero–Degasperis–Fokas equation.
Read more |