Contraction principle (large deviations theory)
From HandWiki
Revision as of 12:40, 21 December 2020 by imported>Scavis (add)
In mathematics — specifically, in large deviations theory — the contraction principle is a theorem that states how a large deviation principle on one space "pushes forward" (via the pushforward of a probability measure) to a large deviation principle on another space via a continuous function.
Statement
Let X and Y be Hausdorff topological spaces and let (με)ε>0 be a family of probability measures on X that satisfies the large deviation principle with rate function I : X → [0, +∞]. Let T : X → Y be a continuous function, and let νε = T∗(με) be the push-forward measure of με by T, i.e., for each measurable set/event E ⊆ Y, νε(E) = με(T−1(E)). Let
- [math]\displaystyle{ J(y) := \inf \{ I(x) \mid x \in X \text{ and } T(x) = y \}, }[/math]
with the convention that the infimum of I over the empty set ∅ is +∞. Then:
- J : Y → [0, +∞] is a rate function on Y,
- J is a good rate function on Y if I is a good rate function on X, and
- (νε)ε>0 satisfies the large deviation principle on Y with rate function J.
References
- Dembo, Amir; Zeitouni, Ofer (1998). Large deviations techniques and applications. Applications of Mathematics (New York) 38 (Second ed.). New York: Springer-Verlag. pp. xvi+396. ISBN 0-387-98406-2. (See chapter 4.2.1)
- den Hollander, Frank (2000). Large deviations. Fields Institute Monographs 14. Providence, RI: American Mathematical Society. pp. x+143. ISBN 0-8218-1989-5.
Original source: https://en.wikipedia.org/wiki/Contraction principle (large deviations theory).
Read more |