Template:Actinides vs fission products

From HandWiki
Revision as of 13:31, 16 November 2022 by Jworkorg (talk | contribs) (import)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Actinides and fission products by half-life v · d · e
Actinides[1] by decay chain Half-life
range (y)
Fission products of 235U by yield<ref>Specifically from thermal neutron fission of U-235, e.g. in a typical nuclear reactor.</ref>
4n 4n+1 4n+2 4n+3
4.5–7% 0.04–1.25% <0.001%
228Ra 4–6 155Euþ
244Cmƒ 241Puƒ 250Cf 227Ac 10–29 90Sr 85Kr 113mCdþ
232Uƒ 238Puƒ 243Cmƒ 29–97 137Cs 151Smþ 121mSn
248Bk[2] 249Cfƒ 242mAmƒ 141–351

No fission products
have a half-life
in the range of
100–210 k years ...

241Amƒ 251Cfƒ[3] 430–900
226Ra 247Bk 1.3 k – 1.6 k
240Pu 229Th 246Cmƒ 243Amƒ 4.7 k – 7.4 k
245Cmƒ 250Cm 8.3 k – 8.5 k
239Puƒ 24.1 k
230Th 231Pa 32 k – 76 k
236Npƒ 233Uƒ 234U 150 k – 250 k 99Tc 126Sn
248Cm 242Pu 327 k – 375 k 79Se
1.53 M 93Zr
237Npƒ 2.1 M – 6.5 M 135Cs 107Pd
236U 247Cmƒ 15 M – 24 M 129I
244Pu 80 M

... nor beyond 15.7 M years[4]

232Th 238U 235Uƒ№ 0.7 G – 14.1 G

Legend for superscript symbols
₡  has thermal neutron capture cross section in the range of 8–50 barns
ƒ  fissile
metastable isomer
№  primarily a naturally occurring radioactive material (NORM)
þ  neutron poison (thermal neutron capture cross section greater than 3k barns)
†  range 4–97 y: Medium-lived fission product
‡  over 200,000 y: Long-lived fission product

References

  1. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  2. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics 71 (2): 299. doi:10.1016/0029-5582(65)90719-4. Bibcode1965NucPh..71..299M. 
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 y. No growth of Cf248 was detected, and a lower limit for the β half-life can be set at about 104 y. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 y."
  3. This is the heaviest nuclide with a half-life of at least four years before the "Sea of Instability".
  4. Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is nearly eight quadrillion years.
Template documentation[create]