Kirwan map
From HandWiki
In differential geometry, the Kirwan map, introduced by British mathematician Frances Kirwan, is the homomorphism
- [math]\displaystyle{ H^*_G(M) \to H^*(M /\!/_p G) }[/math]
where
- [math]\displaystyle{ M }[/math] is a Hamiltonian G-space; i.e., a symplectic manifold acted by a Lie group G with a moment map [math]\displaystyle{ \mu: M \to {\mathfrak g}^* }[/math].
- [math]\displaystyle{ H^*_G(M) }[/math] is the equivariant cohomology ring of [math]\displaystyle{ M }[/math]; i.e.. the cohomology ring of the homotopy quotient [math]\displaystyle{ EG \times_G M }[/math] of [math]\displaystyle{ M }[/math] by [math]\displaystyle{ G }[/math].
- [math]\displaystyle{ M /\!/_p G = \mu^{-1}(p)/G }[/math] is the symplectic quotient of [math]\displaystyle{ M }[/math] by [math]\displaystyle{ G }[/math] at a regular central value [math]\displaystyle{ p \in Z({\mathfrak g}^*) }[/math] of [math]\displaystyle{ \mu }[/math].
It is defined as the map of equivariant cohomology induced by the inclusion [math]\displaystyle{ \mu^{-1}(p) \hookrightarrow M }[/math] followed by the canonical isomorphism [math]\displaystyle{ H_G^*(\mu^{-1}(p)) = H^*(M /\!/_p G) }[/math].
A theorem of Kirwan[1] says that if [math]\displaystyle{ M }[/math] is compact, then the map is surjective in rational coefficients. The analogous result holds between the K-theory of the symplectic quotient and the equivariant topological K-theory of [math]\displaystyle{ M }[/math].[2]
References
- ↑ Kirwan, F.C. (1984). Cohomology of Quotients in Complex and Algebraic Geometry. Mathematical Notes. 31. Princeton University Press. ISBN 978-0-691-21456-6. https://books.google.com/books?id=4wfZBnlSaJ0C&pg=PP5.
- ↑ Harada, M.; Landweber, G. (2007). "Surjectivity for Hamiltonian G-spaces in K-theory". Trans. Amer. Math. Soc. 359 (12): 6001–25. doi:10.1090/S0002-9947-07-04164-5. https://www.ams.org/tran/2007-359-12/S0002-9947-07-04164-5/.
Original source: https://en.wikipedia.org/wiki/Kirwan map.
Read more |