Van den Berg–Kesten inequality

From HandWiki
Revision as of 22:36, 6 March 2023 by SpringEdit (talk | contribs) (url)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Inequality in probability theory

Van den Berg–Kesten inequality
TypeTheorem
FieldProbability theory
Conjectured byvan den Berg and Kesten
Conjectured in1985
First proof byDavid Reimer (mathematician) (fr)

In probability theory, the van den Berg–Kesten (BK) inequality or van den Berg–Kesten–Reimer (BKR) inequality states that the probability for two random events to both happen, and at the same time one can find "disjoint certificates" to show that they both happen, is at most the product of their individual probabilities. The special case for two monotone events (the notion as used in the FKG inequality) was first proved by van den Berg and Kesten[1] in 1985, who also conjectured that the inequality holds in general, not requiring monotonicity. David Reimer (mathematician) (fr)[2] later proved this conjecture.[3]:159[4]:44 The inequality is applied to probability spaces with a product structure, such as in percolation problems.[5]:829

Statement

Let [math]\displaystyle{ \Omega_1, \Omega_2, \ldots, \Omega_n }[/math] be probability spaces, each of finitely many elements. The inequality applies to spaces of the form [math]\displaystyle{ \Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n }[/math], equipped with the product measure, so that each element [math]\displaystyle{ x = (x_1, \ldots, x_n) \in \Omega }[/math] is given the probability [math]\displaystyle{ \mathbb P(\{x\}) = \mathbb P_1(\{x_1\}) \cdots \mathbb P_n(\{x_n\}). }[/math]

For two events [math]\displaystyle{ A, B\subseteq \Omega }[/math], their disjoint occurrence [math]\displaystyle{ A \mathbin{\square} B }[/math] is defined as the event consisting of configurations [math]\displaystyle{ x }[/math] whose memberships in [math]\displaystyle{ A }[/math] and in [math]\displaystyle{ B }[/math] can be verified on disjoint subsets of indices. Formally, [math]\displaystyle{ x \in A \mathbin{\square} B }[/math] if there exist subsets [math]\displaystyle{ I, J \subseteq [n] }[/math] such that:

  1. [math]\displaystyle{ I \cap J = \varnothing, }[/math]
  2. for all [math]\displaystyle{ y }[/math] that agrees with [math]\displaystyle{ x }[/math] on [math]\displaystyle{ I }[/math] (in other words, [math]\displaystyle{ y_i = x_i\ \forall i \in I }[/math]), [math]\displaystyle{ y }[/math] is also in [math]\displaystyle{ A, }[/math] and
  3. similarly every [math]\displaystyle{ z }[/math] that agrees with [math]\displaystyle{ x }[/math] on [math]\displaystyle{ J }[/math] is in [math]\displaystyle{ B. }[/math]

The inequality asserts that: [math]\displaystyle{ \mathbb P (A \mathbin{\square} B) \le \mathbb P (A) \mathbb P (B) }[/math] for every pair of events [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B. }[/math][3]:160

Examples

Coin tosses

If [math]\displaystyle{ \Omega }[/math] corresponds to tossing a fair coin [math]\displaystyle{ n = 10 }[/math] times, then each [math]\displaystyle{ \Omega_i = \{ H, T\} }[/math] consists of the two possible outcomes, heads or tails, with equal probability. Consider the event [math]\displaystyle{ A }[/math] that there exists 3 consecutive heads, and the event [math]\displaystyle{ B }[/math] that there are at least 5 heads in total. Then [math]\displaystyle{ A \mathbin \square B }[/math] would be the following event: there are 3 consecutive heads, and discarding those there are another 5 heads remaining. This event has probability at most [math]\displaystyle{ \mathbb P ( A) \mathbb P ( B), }[/math][4]:42 which is to say the probability of getting [math]\displaystyle{ A }[/math] in 10 tosses, and getting [math]\displaystyle{ B }[/math] in another 10 tosses, independent of each other.

Numerically, [math]\displaystyle{ \mathbb P ( A) = 520/1024 \approx 0.5078, }[/math][6] [math]\displaystyle{ \mathbb P ( B) = 638/1024 \approx 0.6230, }[/math][7] and their disjoint occurrence would imply at least 8 heads, so [math]\displaystyle{ \mathbb P ( A\mathbin \square B) \le \mathbb P(\text{8 heads or more}) = 56/1024 \approx 0.0547. }[/math][8]

Percolation

In (Bernoulli) bond percolation of a graph, the [math]\displaystyle{ \Omega_i }[/math]'s are indexed by edges. Each edge is kept (or "open") with some probability [math]\displaystyle{ p, }[/math] or otherwise removed (or "closed"), independent of other edges, and one studies questions about the connectivity of the remaining graph, for example the event [math]\displaystyle{ u \leftrightarrow v }[/math] that there is a path between two vertices [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math] using only open edges. For events of such form, the disjoint occurrence [math]\displaystyle{ A \mathbin \square B }[/math] is the event where there exist two open paths not sharing any edges (corresponding to the subsets [math]\displaystyle{ I }[/math] and [math]\displaystyle{ J }[/math] in the definition), such that the first one providing the connection required by [math]\displaystyle{ A, }[/math] and the second for [math]\displaystyle{ B. }[/math][9]:1322[10]

The inequality can be used to prove a version of the exponential decay phenomenon in the subcritical regime, namely that on the integer lattice graph [math]\displaystyle{ \mathbb Z^d, }[/math] for [math]\displaystyle{ p \lt p_\mathrm c }[/math] a suitably defined critical probability, the radius of the connected component containing the origin obeys a distribution with exponentially small tails:

[math]\displaystyle{ \mathbb P( 0 \leftrightarrow \partial [-r, r]^d) \le \exp(- c r) }[/math] for some constant [math]\displaystyle{ c \gt 0 }[/math] depending on [math]\displaystyle{ p. }[/math] Here [math]\displaystyle{ \partial [-r, r]^d }[/math] consists of vertices [math]\displaystyle{ x }[/math] that satisfies [math]\displaystyle{ \max_{1 \le i \le d} |x_i| = r. }[/math][11]:87–90[12]:202

Extensions

Multiple events

When there are three or more events, the operator [math]\displaystyle{ \square }[/math] may not be associative, because given a subset of indices [math]\displaystyle{ K }[/math] on which [math]\displaystyle{ x \in A \mathbin \square B }[/math] can be verified, it might not be possible to split [math]\displaystyle{ K }[/math] a disjoint union [math]\displaystyle{ I \sqcup J }[/math] such that [math]\displaystyle{ I }[/math] witnesses [math]\displaystyle{ x \in A }[/math] and [math]\displaystyle{ J }[/math] witnesses [math]\displaystyle{ x \in B }[/math].[4]:43 For example, there exists an event [math]\displaystyle{ A \subseteq \{0, 1\}^6 }[/math] such that [math]\displaystyle{ \left((A \mathbin \square A) \mathbin \square A\right) \mathbin \square A \neq (A \mathbin \square A) \mathbin \square (A \mathbin \square A). }[/math][13]:447

Nonetheless, one can define the [math]\displaystyle{ k }[/math]-ary BKR operation of events [math]\displaystyle{ A_1, A_2, \ldots, A_k }[/math] as the set of configurations [math]\displaystyle{ x }[/math] where there are pairwise disjoint subset of indices [math]\displaystyle{ I_i \subseteq [n] }[/math] such that [math]\displaystyle{ I_i }[/math] witnesses the membership of [math]\displaystyle{ x }[/math] in [math]\displaystyle{ A_i. }[/math] This operation satisfies: [math]\displaystyle{ A_1 \mathbin \square A_2 \mathbin \square A_3 \mathbin \square \cdots \mathbin \square A_k \subseteq \left( \cdots \left((A_1 \mathbin \square A_2) \mathbin \square A_3 \right) \mathbin \square \cdots \right) \mathbin \square A_k, }[/math] whence [math]\displaystyle{ \begin{align} \mathbb P( A_1 \mathbin \square A_2 \mathbin \square A_3 \mathbin \square \cdots \mathbin \square A_k) &\le \mathbb P\left( \left( \cdots \left((A_1 \mathbin \square A_2) \mathbin \square A_3 \right) \mathbin \square \cdots \right) \mathbin \square A_k\right) \\ &\le \mathbb P( A_1) \mathbb P( A_2) \cdots \mathbb P( A_k) \end{align} }[/math] by repeated use of the original BK inequality.[14]:204–205 This inequality was one factor used to analyse the winner statistics from the Florida Lottery and identify what Mathematics Magazine referred to as "implausibly lucky"[14]:210 individuals, confirmed later by enforcement investigation[15] that law violations were involved.[14]:210

Spaces of larger cardinality

When [math]\displaystyle{ \Omega_i }[/math] is allowed to be infinite, measure theoretic issues arise. For [math]\displaystyle{ \Omega = [0, 1]^n }[/math] and [math]\displaystyle{ \mathbb P }[/math] the Lebesgue measure, there are measurable subsets [math]\displaystyle{ A, B \subseteq \Omega }[/math] such that [math]\displaystyle{ A \mathbin \square B }[/math] is non-measurable (so [math]\displaystyle{ \mathbb P(A \mathbin \square B) }[/math] in the inequality is not defined),[13]:437 but the following theorem still holds:[13]:440

If [math]\displaystyle{ A, B \subseteq [0, 1]^n }[/math] are Lebesgue measurable, then there is some Borel set [math]\displaystyle{ C }[/math] such that:

  • [math]\displaystyle{ A \mathbin \square B \subseteq C, }[/math] and
  • [math]\displaystyle{ \mathbb P(C) \le \mathbb P(A) \mathbb P(B). }[/math]

References

  1. van den Berg, J.; Kesten, H. (1985). "Inequalities with applications to percolation and reliability". Journal of Applied Probability 22 (3): 556–569. doi:10.1017/s0021900200029326. ISSN 0021-9002. https://dx.doi.org/10.1017/s0021900200029326. 
  2. Reimer, David (2000). "Proof of the Van den Berg–Kesten Conjecture". Combinatorics, Probability and Computing 9 (1): 27–32. doi:10.1017/S0963548399004113. ISSN 0963-5483. https://dx.doi.org/10.1017/S0963548399004113. 
  3. 3.0 3.1 Borgs, Christian; Chayes, Jennifer T.; Randall, Dana (1999). "The van den Berg-Kesten-Reimer Inequality: A Review". in Bramson, Maury; Durrett, Rick. Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten. Progress in Probability. Boston, MA: Birkhäuser. pp. 159–173. doi:10.1007/978-1-4612-2168-5_9. ISBN 978-1-4612-2168-5. https://dx.doi.org/10.1007/978-1-4612-2168-5_9. 
  4. 4.0 4.1 4.2 Bollobás, Béla; Riordan, Oliver (2006). "2 - Probabilistic tools". Percolation. Cambridge University Press. pp. 36–49. doi:10.1017/CBO9781139167383.003. ISBN 9780521872324. https://dx.doi.org/10.1017/CBO9781139167383.003. 
  5. Grimmett, Geoffrey R.; Lawler, Gregory F. (2020). "Harry Kesten (1931–2019): A Personal and Scientific Tribute". Notices of the AMS 67 (6): 822–831. doi:10.1090/noti2100. "The highly novel BK (van den Berg/Kesten) inequality plays a key role in systems subjected to a product measure such as percolation.". 
  6. Template:WolframAlpha
  7. Template:WolframAlpha
  8. Template:WolframAlpha
  9. Grimmett, Geoffrey (1995-03-01). "Comparison and disjoint-occurrence inequalities for random-cluster models". Journal of Statistical Physics 78 (5): 1311–1324. doi:10.1007/BF02180133. ISSN 1572-9613. Bibcode1995JSP....78.1311G. https://doi.org/10.1007/BF02180133. Retrieved 2022-12-18. 
  10. Chayes, Jennifer Tour; Puha, Amber L.; Sweet, Ted (1999). "Lecture 1. The Basics of Percolation (in Independent and dependent percolation)". Probability theory and applications. IAS/Park City Math. Ser.. 6. Amer. Math. Soc., Providence, RI. pp. 53–66. http://www.cts.cuni.cz/soubory/konference/pdf.pdf#page=17. Retrieved 2022-12-18. 
  11. Grimmett, Geoffrey R. (2018). "5.1 Subcritical Phase". Probability on Graphs: Random Processes on Graphs and Lattices. Institute of Mathematical Statistics Textbooks (2 ed.). Cambridge: Cambridge University Press. pp. 86–130. doi:10.1017/9781108528986.006. ISBN 978-1-108-43817-9. 
  12. Duminil-Copin, Hugo; Tassion, Vincent (2017-01-30). "A new proof of the sharpness of the phase transition for Bernoulli percolation on [math]\displaystyle{ \mathbb Z^d }[/math]". L'Enseignement Mathématique 62 (1): 199–206. doi:10.4171/lem/62-1/2-12. ISSN 0013-8584. https://ems.press/journals/lem/articles/14583. "The proof of Item 1 (with [math]\displaystyle{ \tilde p_c }[/math] in place of [math]\displaystyle{ p_c }[/math]) can be derived from the BK-inequality [vdBK].". 
  13. 13.0 13.1 13.2 Arratia, Richard; Garibaldi, Skip; Hales, Alfred W. (2018). "The van den Berg–Kesten–Reimer operator and inequality for infinite spaces". Bernoulli 24 (1): 433–448. doi:10.3150/16-BEJ883. ISSN 1350-7265. 
  14. 14.0 14.1 14.2 Arratia, Richard; Garibaldi, Skip; Mower, Lawrence; Stark, Philip B. (2015-06-01). "Some People Have All the Luck". Mathematics Magazine 88 (3): 196–211. doi:10.4169/math.mag.88.3.196. ISSN 0025-570X. https://doi.org/10.4169/math.mag.88.3.196. Retrieved 2022-12-18. 
  15. Mower, Lawrence (2015-07-15). "Math used in Post's Florida Lottery investigation published in journal". Palm Beach Post. https://www.palmbeachpost.com/story/news/local/2015/07/15/math-used-in-post-s/7571402007/. "Some of the frequent winners, including the top one, were part of an underground market for winning lottery tickets, lottery investigators later found."