Hua's identity

From HandWiki
Revision as of 22:45, 6 March 2023 by BotanyGa (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Formula relating pairs of elements in a division ring

In algebra, Hua's identity[1] named after Hua Luogeng, states that for any elements a, b in a division ring, [math]\displaystyle{ a - \left(a^{-1} + \left(b^{-1} - a\right)^{-1}\right)^{-1} = aba }[/math] whenever [math]\displaystyle{ ab \ne 0, 1 }[/math]. Replacing [math]\displaystyle{ b }[/math] with [math]\displaystyle{ -b^{-1} }[/math] gives another equivalent form of the identity: [math]\displaystyle{ \left(a + ab^{-1}a\right)^{-1} + (a + b)^{-1} = a^{-1}. }[/math]

Hua's theorem

The identity is used in a proof of Hua's theorem,[2][3] which states that if [math]\displaystyle{ \sigma }[/math] is a function between division rings satisfying [math]\displaystyle{ \sigma(a + b) = \sigma(a) + \sigma(b), \quad \sigma(1) = 1, \quad \sigma(a^{-1}) = \sigma(a)^{-1}, }[/math] then [math]\displaystyle{ \sigma }[/math] is a homomorphism or an antihomomorphism. This theorem is connected to the fundamental theorem of projective geometry.

Proof of the identity

One has [math]\displaystyle{ (a - aba)\left(a^{-1} + \left(b^{-1} - a\right)^{-1}\right) = 1 - ab + ab\left(b^{-1} - a\right)\left(b^{-1} - a\right)^{-1} = 1. }[/math]

The proof is valid in any ring as long as [math]\displaystyle{ a, b, ab - 1 }[/math] are units.[4]

References