Biology:Botzinger complex

From HandWiki
Revision as of 07:56, 9 March 2023 by Rtextdoc (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mammals, the Bötzinger complex (BötC) is a group of neurons located in the rostral ventrolateral medulla, and ventral respiratory column. In the medulla, this group is located caudally to the facial nucleus and ventral to nucleus ambiguus.[1][2]

Function

The Bötzinger complex plays an important role in controlling breathing[3][4] and responding to hypoxia.[5][6] The Bötzinger complex consists primarily of glycinergic neurons[7] which inhibit respiratory activity. Of the respiratory cycle phases BötC generates post-inspiratory (Post-I) activity and augmenting expiratory (aug-e) activity.[8][9][10]

Name

The Bötzinger complex was named by UCLA Professor Jack Feldman in 1978, after a bottle of white wine named Botzinger present at his table during a scientific meeting in Hirschhorn, Germany, that year.[citation needed]

Connections

The Bötzinger Complex has projections to

Only augmenting expiratory neurons of BötC, which are exclusively glycinergic, project to the phrenic nucleus.[20][13]

Projections to the Bötzinger complex include the nucleus tractus solitarii (NTS)[21][22] the DRG and the VRG.[23]

Physiology

These neurons are intrinsic pacemakers.[24] Post-I neurons display an initial burst of activity followed by decrease in activity at the end of inspiration. Aug-E neurons begin firing during the E2 phase and end before the phrenic nerve burst.[18][25]

References

  1. "Electrophysiological properties of rostral medullary respiratory neurones in the cat: an intracellular study.". J Physiol 407: 293–310. 1988. doi:10.1113/jphysiol.1988.sp017416. PMID 3256618. 
  2. 2.0 2.1 "Morphology of expiratory neurons of the Bötzinger complex: an HRP study in the cat.". J Comp Neurol 258 (4): 565–79. 1987. doi:10.1002/cne.902580407. PMID 3034989. 
  3. "Reciprocal connections between rostral ventrolateral medulla and inspiration-related medullary areas in the cat.". Brain Res 565 (1): 171–4. 1991. doi:10.1016/0006-8993(91)91751-l. PMID 1773353. 
  4. Guyenet PG (2000). "Neural structures that mediate sympathoexcitation during hypoxia.". Respir Physiol 121 (2–3): 147–62. doi:10.1016/s0034-5687(00)00125-0. PMID 10963771. 
  5. "Hypoxia-induced Fos expression in neurons projecting to the pressor region in the rostral ventrolateral medulla.". Neuroscience 80 (4): 1209–24. 1997. doi:10.1016/s0306-4522(97)00111-5. PMID 9284071. 
  6. "The distribution of FOS-immunoreactive neurons in the brainstem, midbrain and diencephalon of fetal sheep in response to acute hypoxia in mid and late gestation.". Brain Res Dev Brain Res 114 (1): 9–26. 1999. doi:10.1016/s0165-3806(99)00010-3. PMID 10209238. 
  7. "Glycinergic interneurons are functionally integrated into the inspiratory network of mouse medullary slices.". Pflügers Arch 458 (3): 459–69. 2009. doi:10.1007/s00424-009-0647-1. PMID 19238427. 
  8. "[Respiratory emergency in the newborn infant: extreme laryngotracheo-esophageal cleft (esophagotrachea)].". Monatsschr Kinderheilkd 134 (12): 874–7. 1986. PMID 3821744. 
  9. Richter DW (1982). "Generation and maintenance of the respiratory rhythm.". J Exp Biol 100: 93–107. PMID 6757372. 
  10. Merrill EG (1981). "Where are the real respiratory neurons?". Fed Proc 40 (9): 2389–94. PMID 7250385. 
  11. 11.0 11.1 "Extensive monosynaptic inhibition of ventral respiratory group neurons by augmenting neurons in the Bötzinger complex in the cat.". Exp Brain Res 81 (3): 639–48. 1990. doi:10.1007/bf02423514. PMID 2226695. 
  12. 12.0 12.1 12.2 12.3 "Axonal projections from Bötzinger expiratory neurons to contralateral ventral and dorsal respiratory groups in the cat.". Exp Brain Res 72 (1): 167–77. 1988. doi:10.1007/bf00248512. PMID 3169184. 
  13. 13.0 13.1 "Bötzinger-complex expiratory neurons monosynaptically inhibit phrenic motoneurons in the decerebrate rat.". Exp Brain Res 122 (2): 149–56. 1998. doi:10.1007/s002210050502. PMID 9776513. 
  14. "Electrophysiological demonstration of the projection from expiratory neurones in rostral medulla to contralateral dorsal respiratory group.". Brain Res 197 (2): 521–4. 1980. doi:10.1016/0006-8993(80)91140-3. PMID 7407571. 
  15. "Expiratory neurons of the Bötzinger Complex in the rat: a morphological study following intracellular labeling with biocytin.". J Comp Neurol 335 (2): 267–82. 1993. doi:10.1002/cne.903350210. PMID 8227518. 
  16. "Respiratory rhythm generation in vivo.". Physiology 29 (1): 58–71. 2014. doi:10.1152/physiol.00035.2013. PMID 24382872. 
  17. "Inhibitory connections among rostral medullary expiratory neurones detected with cross-correlation in the decerebrate rat.". Pflügers Arch 446 (3): 365–72. 2003. doi:10.1007/s00424-003-1024-0. PMID 12687375. 
  18. 18.0 18.1 "Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms.". J Neurophysiol 98 (6): 3370–87. 2007. doi:10.1152/jn.00985.2007. PMID 17913982. 
  19. "Brainstem and spinal projections of augmenting expiratory neurons in the rat.". Neurosci Res 45 (1): 41–51. 2003. doi:10.1016/s0168-0102(02)00197-9. PMID 12507723. 
  20. "Evidence for glycinergic respiratory neurons: Bötzinger neurons express mRNA for glycinergic transporter 2.". J Comp Neurol 407 (4): 583–97. 1999. doi:10.1002/(sici)1096-9861(19990517)407:4<583::aid-cne8>3.0.co;2-e. PMID 10235646. 
  21. "Are L-glutamate and ATP cotransmitters of the peripheral chemoreflex in the rat nucleus tractus solitarius?". Exp Physiol 94 (1): 38–45. 2009. doi:10.1113/expphysiol.2008.043653. PMID 18931046. 
  22. "[Regional distribution of pulmonary perfusion during fluid overload in man].". Ann Anesthesiol Fr 16 Spec No 2-3: 164–8. 1975. PMID 9861. 
  23. "Projections to Bötzinger expiratory neurons by dorsal and ventral respiratory group neurons.". NeuroReport 3 (5): 393–6. 1992. doi:10.1097/00001756-199205000-00004. PMID 1633274. 
  24. "Intrinsic properties of rostral ventrolateral medulla presympathetic and bulbospinal respiratory neurons of juvenile rats are not affected by chronic intermittent hypoxia.". Exp Physiol 99 (7): 937–50. 2014. doi:10.1113/expphysiol.2013.077800. PMID 24728679. 
  25. "Short-term sustained hypoxia induces changes in the coupling of sympathetic and respiratory activities in rats.". J Physiol 592 (Pt 9): 2013–33. 2014. doi:10.1113/jphysiol.2013.262212. PMID 24614747.