Indefinite product
In mathematics, the indefinite product operator is the inverse operator of [math]\displaystyle{ Q(f(x)) = \frac{f(x+1)}{f(x)} }[/math]. It is a discrete version of the geometric integral of geometric calculus, one of the non-Newtonian calculi. Some authors use term discrete multiplicative integration.[citation needed] Thus
- [math]\displaystyle{ Q\left( \prod_x f(x) \right) = f(x) \, . }[/math]
More explicitly, if [math]\displaystyle{ \prod_x f(x) = F(x) }[/math], then
- [math]\displaystyle{ \frac{F(x+1)}{F(x)} = f(x) \, . }[/math]
If F(x) is a solution of this functional equation for a given f(x), then so is CF(x) for any constant C. Therefore, each indefinite product actually represents a family of functions, differing by a multiplicative constant.
Period rule
If [math]\displaystyle{ T }[/math] is a period of function [math]\displaystyle{ f(x) }[/math] then
- [math]\displaystyle{ \prod _x f(Tx)=C f(Tx)^{x-1} }[/math]
Connection to indefinite sum
Indefinite product can be expressed in terms of indefinite sum:
- [math]\displaystyle{ \prod _x f(x)= \exp \left(\sum _x \ln f(x)\right) }[/math]
Alternative usage
Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given.[1] e.g.
- [math]\displaystyle{ \prod_{k=1}^n f(k) }[/math].
Rules
- [math]\displaystyle{ \prod _x f(x)g(x) = \prod _x f(x)\prod _x g(x) }[/math]
- [math]\displaystyle{ \prod _x f(x)^a = \left(\prod _x f(x)\right)^a }[/math]
- [math]\displaystyle{ \prod _x a^{f(x)} = a^{\sum _x f(x)} }[/math]
List of indefinite products
This is a list of indefinite products [math]\displaystyle{ \prod _x f(x) }[/math]. Not all functions have an indefinite product which can be expressed in elementary functions.
- [math]\displaystyle{ \prod _x a = C a^x }[/math]
- [math]\displaystyle{ \prod _x x = C\, \Gamma (x) }[/math]
- [math]\displaystyle{ \prod _x \frac{x+1}{x} = C x }[/math]
- [math]\displaystyle{ \prod _x \frac{x+a}{x} = \frac{C\,\Gamma (x+a)}{\Gamma (x)} }[/math]
- [math]\displaystyle{ \prod _x x^a = C\, \Gamma (x)^a }[/math]
- [math]\displaystyle{ \prod _x ax = C a^x \Gamma (x) }[/math]
- [math]\displaystyle{ \prod _x a^x = C a^{\frac{x}{2} (x-1)} }[/math]
- [math]\displaystyle{ \prod _x a^{\frac{1}{x}} = C a^{\frac{\Gamma'(x)}{\Gamma(x)}} }[/math]
- [math]\displaystyle{ \prod _x x^x= C\, e^{\zeta^\prime(-1,x)-\zeta^\prime(-1)}= C\,e^{\psi^{(-2)}(z)+\frac{z^2-z}{2}-\frac z2 \ln (2\pi)}= C\, \operatorname{K}(x) }[/math]
- (see K-function)
- [math]\displaystyle{ \prod _x \Gamma(x) = \frac{C\,\Gamma(x)^{x-1}}{\operatorname{K}(x)} = C\,\Gamma(x)^{x-1} e^{\frac z2 \ln (2\pi)-\frac{z^2-z}{2}-\psi^{(-2)}(z)}= C\, \operatorname{G}(x) }[/math]
- (see Barnes G-function)
- [math]\displaystyle{ \prod _x \operatorname{sexp}_a(x) = \frac{C\, (\operatorname{sexp}_a (x))'}{\operatorname{sexp}_a (x)(\ln a)^x} }[/math]
- (see super-exponential function)
- [math]\displaystyle{ \prod _x x+a = C\,\Gamma (x+a) }[/math]
- [math]\displaystyle{ \prod _x ax+b = C\, a^x \Gamma \left(x+\frac{b}{a}\right) }[/math]
- [math]\displaystyle{ \prod _x ax^2+bx = C\,a^x \Gamma (x) \Gamma \left(x+\frac{b}{a}\right) }[/math]
- [math]\displaystyle{ \prod _x x^2+1 = C\, \Gamma (x-i) \Gamma (x+i) }[/math]
- [math]\displaystyle{ \prod _x x+\frac {1}{x} = \frac{C\, \Gamma (x-i) \Gamma (x+i)}{\Gamma (x)} }[/math]
- [math]\displaystyle{ \prod _x \csc x \sin (x+1) = C \sin x }[/math]
- [math]\displaystyle{ \prod _x \sec x \cos (x+1) = C \cos x }[/math]
- [math]\displaystyle{ \prod _x \cot x \tan (x+1) = C \tan x }[/math]
- [math]\displaystyle{ \prod _x \tan x \cot (x+1) = C \cot x }[/math]
See also
- Indefinite sum
- Product integral
- List of derivatives and integrals in alternative calculi
- Fractal derivative
References
- ↑ Algorithms for Nonlinear Higher Order Difference Equations, Manuel Kauers
Further reading
- http://reference.wolfram.com/mathematica/ref/Product.html -Indefinite products with Mathematica
- [1] - bug in Maple V to Maple 8 handling of indefinite product
- Markus Müller. How to Add a Non-Integer Number of Terms, and How to Produce Unusual Infinite Summations
- Markus Mueller, Dierk Schleicher. Fractional Sums and Euler-like Identities
External links
Original source: https://en.wikipedia.org/wiki/Indefinite product.
Read more |