K-function

From HandWiki

In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.

Definition

There are multiple equivalent definitions of the K-function.

The direct definition:

K(z)=(2π)z12exp[(z2)+0z1lnΓ(t+1)dt].

Definition via

K(z)=exp[ζ(1,z)ζ(1)]

where ζ′(z) denotes the derivative of the Riemann zeta function, ζ(a,z) denotes the Hurwitz zeta function and

ζ(a,z) =def ζ(s,z)s|s=a,  ζ(s,q)=k=0(k+q)s

Definition via polygamma function:[1]

K(z)=exp[ψ(2)(z)+z2z2z2ln2π]

Definition via balanced generalization of the polygamma function:[2]

K(z)=Aexp[ψ(2,z)+z2z2]

where A is the Glaisher constant.

It can be defined via unique characterization, similar to how the gamma function can be uniquely characterized by the Bohr-Mollerup Theorem:

Let

f:(0,)

be a solution to the functional equation

f(x+1)f(x)=xlnx

, such that there exists some

M>0

, such that given any distinct

x0,x1,x2,x3(M,)

, the divided difference

f[x0,x1,x2,x3]0

. Such functions are precisely

f=lnK+C

, where

C

is an arbitrary constant.[3]

Properties

For α > 0:

αα+1lnK(x)dx01lnK(x)dx=12α2(lnα12)
Proof

Functional equations

The K-function is closely related to the gamma function and the Barnes G-function. For all complex z, K(z)G(z)=e(z1)lnΓ(z)

Multiplication formula

Similar to the multiplication formula for the gamma function:

j=1n1Γ(jn)=(2π)n1n

there exists a multiplication formula for the K-Function involving Glaisher's constant:[4]

j=1n1K(jn)=An21nn112ne1n212n

Integer values

For all non-negative integers,K(n+1)=112233nn=H(n)where H is the hyperfactorial.

The first values are

1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (sequence A002109 in the OEIS).

References

  1. Adamchik, Victor S. (1998), "PolyGamma Functions of Negative Order", Journal of Computational and Applied Mathematics 100 (2): 191–199, doi:10.1016/S0377-0427(98)00192-7, https://www.cs.cmu.edu/~adamchik/articles/polyg.htm 
  2. Espinosa, Olivier; Moll, Victor Hugo (2004), "A Generalized polygamma function", Integral Transforms and Special Functions 15 (2): 101–115, doi:10.1080/10652460310001600573, http://www.math.tulane.edu/~vhm/papers_html/genoff.pdf 
  3. Marichal, Jean-Luc; Zenaïdi, Naïm (2024). "A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions: a Tutorial". Bitstream 98 (2): 455–481. doi:10.1007/s00010-023-00968-9. https://orbilu.uni.lu/bitstream/10993/51793/1/AGeneralizationOfBohrMollerupTutorial.pdf. 
  4. Sondow, Jonathan; Hadjicostas, Petros (2006-10-16). "The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant" (in en). Journal of Mathematical Analysis and Applications 332: 292–314. doi:10.1016/j.jmaa.2006.09.081.