Physics:Exciton-polaritons

From HandWiki
Revision as of 16:51, 1 December 2020 by imported>WikiG (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Overview

Exciton-polaritons are a type of polaritons, hybrid light and matter quasiparticles arising from the strong coupling of the electromagnetic dipolar oscillations of excitons (either in bulk or quantum wells) and photons.[1]

Theory

The coupling of the two oscillators, photons modes in the semiconductor optical microcavity and excitons of the quantum wells, results in the energy anticrossing of the bare oscillators, giving rise to the two new normal modes for the system, known as the upper and lower polariton resonances (or branches). The energy shift is proportional to the coupling strength (dependent, e.g., on the field and polarization overlaps). The higher energy or upper mode (UPB, upper polariton branch) is characterized by the photonic and exciton fields oscillating in-phase, while the LPB (lower polariton branch) mode is characterized by them oscillating with phase-opposition. Microcavity exciton-polaritons inherit some properties from both of their roots, such as a light effective mass (from the photons) and a capacity to interact with each other (from the strong exciton nonlinearities) and with the environment (including the internal phonons, which provide thermalization, and the outcoupling by radiative losses). In most cases the interactions are repulsive, at least between polariton quasi-particles of the same spin type (intra-spin interactions) and the nonlinearity term is positive (increase of total energy, or blueshift, upon increasing density).[2]

Other features

Polaritons are also characterized by non-parabolic energy-momentum dispersion relations, which limit the validity of the parabolic effective-mass approximation to a small range of momenta [3]. They also have a spin degree-of-freedom, making them spinorial fluids able to sustain different polarization textures. Exciton-polaritons are composite bosons which can be observed to form Bose-Einstein condensates,[4][5][6][7] and sustain polariton superfluidity and quantum vortices[8] and are prospected for emerging technological applications.[9] Many experimental works currently focus on polariton lasers,[10] optically addressed transistors,[11] nonlinear states such as solitons and shock waves, long-range coherence properties and phase transitions, quantum vortices and spinorial patterns. Modelization of exciton-polariton fluids mainly rely on the use of GPE (Gross–Pitaevskii equations) which are in the form of nonlinear Schrödinger equations.[12]

See also

  • Bose-Einstein condensation of polaritons
  • Bose-Einstein condensation of quasiparticles

References

  1. S.I. Pekar (1958). "Theory of electromagnetic waves in a crystal with excitons". Journal of Physics and Chemistry of Solids 5 (1–2): 11–22. doi:10.1016/0022-3697(58)90127-6. Bibcode1958JPCS....5...11P. 
  2. Vladimirova, M (2010). "Polariton-polariton interaction constants in microcavities". Physical Review B 82 (7): 075301. doi:10.1103/PhysRevB.82.075301. Bibcode2010PhRvB..82g5301V. 
  3. Pinsker, F.; Ruan, X.; Alexander, T. (2017). "Effects of the non-parabolic kinetic energy on non-equilibrium polariton condensates". Scientific Reports 7 (1891): 1891. doi:10.1038/s41598-017-01113-8. PMID 28507290. Bibcode2017NatSR...7.1891P. 
  4. Deng, H (2002). "Condensation of semiconductor microcavity exciton polaritons". Science 298 (5591): 199–202. doi:10.1126/science.1074464. PMID 12364801. Bibcode2002Sci...298..199D. 
  5. Kasprzak, J (2006). "Bose–Einstein condensation of exciton polaritons". Nature 443 (7110): 409–14. doi:10.1038/nature05131. PMID 17006506. Bibcode2006Natur.443..409K. 
  6. Deng, H (2010). "Exciton-polariton Bose-Einstein condensation". Reviews of Modern Physics 82 (2): 1489-1537. doi:10.1103/RevModPhys.82.1489. Bibcode2010RvMP...82.1489D. 
  7. Byrnes, T.; Kim, N. Y.; Yamamoto, Y. (2014). "Exciton–polariton condensates". Nature Physics 10 (11): 803. doi:10.1038/nphys3143. Bibcode2014NatPh..10..803B. 
  8. Dominici, L et al. (2015). "Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid". Science Advances 1 (11): e1500807. doi:10.1126/sciadv.1500807. PMID 26665174. PMC 4672757. Bibcode2015SciA....1E0807D. http://advances.sciencemag.org/content/advances/1/11/e1500807.full.pdf. 
  9. Sanvitto, D.; Kéna-Cohen, S. (2016). "The road towards polaritonic devices". Nature Materials 15 (10): 1061-73. doi:10.1038/nmat4668. PMID 27429208. Bibcode2016NatMa..15.1061S. 
  10. Schneider, C. et al. (2013). "An electrically pumped polariton laser". Nature 497 (7449): 348–352. doi:10.1038/nature12036. PMID 23676752. Bibcode2013Natur.497..348S. 
  11. Ballarini, D. et al. (2013). "All-optical polariton transistor". Nature Communications 4 (2013): 1778. doi:10.1038/ncomms2734. PMID 23653190. Bibcode2013NatCo...4E1778B. https://www.nature.com/articles/ncomms2734. 
  12. Moxley, Frederick Ira; Byrnes, Tim; Ma, Baoling; Yan, Yun; Dai, Weizhong (2015). "A G-FDTD scheme for solving multi-dimensional open dissipative Gross–Pitaevskii equations". Journal of Computational Physics 282: 303–316. doi:10.1016/j.jcp.2014.11.021. ISSN 0021-9991. Bibcode2015JCoPh.282..303M. 

External links