Physics:Einstein–Brillouin–Keller method

From HandWiki
Revision as of 19:29, 25 June 2023 by WikiGary (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Semi-classical method for computing quantum eigenvalues

The Einstein–Brillouin–Keller method (EBK) is a semiclassical method (named after Albert Einstein, Léon Brillouin, and Joseph B. Keller) used to compute eigenvalues in quantum-mechanical systems. EBK quantization is an improvement from Bohr-Sommerfeld quantization which did not consider the caustic phase jumps at classical turning points.[1] This procedure is able to reproduce exactly the spectrum of the 3D harmonic oscillator, particle in a box, and even the relativistic fine structure of the hydrogen atom.[2]

In 1976–1977, Michael Berry and M. Tabor derived an extension to Gutzwiller trace formula for the density of states of an integrable system starting from EBK quantization.[3][4]

There have been a number of recent results on computational issues related to this topic, for example, the work of Eric J. Heller and Emmanuel David Tannenbaum using a partial differential equation gradient descent approach.[5]

Procedure

Given a separable classical system defined by coordinates [math]\displaystyle{ (q_i,p_i);i\in\{1,2,\cdots,d\} }[/math], in which every pair [math]\displaystyle{ (q_i,p_i) }[/math] describes a closed function or a periodic function in [math]\displaystyle{ q_i }[/math], the EBK procedure involves quantizing the line integrals of [math]\displaystyle{ p_i }[/math] over the closed orbit of [math]\displaystyle{ q_i }[/math]:

[math]\displaystyle{ I_i=\frac{1}{2\pi}\oint p_i dq_i = \hbar \left(n_i+\frac{\mu_i}{4}+\frac{b_i}{2}\right) }[/math]

where [math]\displaystyle{ I_i }[/math] is the action-angle coordinate, [math]\displaystyle{ n_i }[/math] is a positive integer, and [math]\displaystyle{ \mu_i }[/math] and [math]\displaystyle{ b_i }[/math] are Maslov indexes. [math]\displaystyle{ \mu_i }[/math] corresponds to the number of classical turning points in the trajectory of [math]\displaystyle{ q_i }[/math] (Dirichlet boundary condition), and [math]\displaystyle{ b_i }[/math] corresponds to the number of reflections with a hard wall (Neumann boundary condition).[6]

Examples

1D Harmonic oscillator

The Hamiltonian of a simple harmonic oscillator is given by

[math]\displaystyle{ H=\frac{p^2}{2m}+\frac{m\omega^2x^2}{2} }[/math]

where [math]\displaystyle{ p }[/math] is the linear momentum and [math]\displaystyle{ x }[/math] the position coordinate. The action variable is given by

[math]\displaystyle{ I=\frac{2}{\pi}\int_0^{x_0}\sqrt{2mE-m^2\omega^2x^2}\mathrm{d}x }[/math]

where we have used that [math]\displaystyle{ H=E }[/math] is the energy and that the closed trajectory is 4 times the trajectory from 0 to the turning point [math]\displaystyle{ x_0=\sqrt{2E/m\omega^2} }[/math].

The integral turns out to be

[math]\displaystyle{ E=I\omega }[/math],

which under EBK quantization there are two soft turning points in each orbit [math]\displaystyle{ \mu_x=2 }[/math] and [math]\displaystyle{ b_x=0 }[/math]. Finally, that yields

[math]\displaystyle{ E=\hbar\omega(n+1/2) }[/math],

which is the exact result for quantization of the quantum harmonic oscillator.

2D hydrogen atom

The Hamiltonian for a non-relativistic electron (electric charge [math]\displaystyle{ e }[/math]) in a hydrogen atom is:

[math]\displaystyle{ H=\frac{p_r^2}{2m}+\frac{p_\varphi^2}{2mr^2}-\frac{e^2}{4\pi\epsilon_{0} r} }[/math]

where [math]\displaystyle{ p_r }[/math] is the canonical momentum to the radial distance [math]\displaystyle{ r }[/math], and [math]\displaystyle{ p_\varphi }[/math] is the canonical momentum of the azimuthal angle [math]\displaystyle{ \varphi }[/math]. Take the action-angle coordinates:

[math]\displaystyle{ I_\varphi=\text{constant}=|L| }[/math]

For the radial coordinate [math]\displaystyle{ r }[/math]:

[math]\displaystyle{ p_r=\sqrt{2mE-\frac{L^2}{r^2}+\frac{e^2}{4\pi\epsilon_0 r}} }[/math]
[math]\displaystyle{ I_r=\frac{1}{\pi}\int_{r_1}^{r_2} p_r dr = \frac{me^2}{4\pi\epsilon_0\sqrt{-2mE}}-|L| }[/math]

where we are integrating between the two classical turning points [math]\displaystyle{ r_1,r_2 }[/math] ([math]\displaystyle{ \mu_r=2 }[/math])

[math]\displaystyle{ E=-\frac{me^4}{32\pi^2\epsilon_0^2(I_r+I_\varphi)^2} }[/math]

Using EBK quantization [math]\displaystyle{ b_r=\mu_\varphi=b_\varphi=0,n_\varphi=m }[/math] :

[math]\displaystyle{ I_\varphi=\hbar m\quad;\quad m=0,1,2,\cdots }[/math]
[math]\displaystyle{ I_r=\hbar(n_r+1/2)\quad;\quad n_r=0,1,2,\cdots }[/math]
[math]\displaystyle{ E=-\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2(n_r+m+1/2)^2} }[/math]

and by making [math]\displaystyle{ n=n_r+m+1 }[/math] the spectrum of the 2D hydrogen atom [7] is recovered :

[math]\displaystyle{ E_n=-\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2(n-1/2)^2}\quad;\quad n=1,2,3,\cdots }[/math]

Note that for this case [math]\displaystyle{ I_\varphi=|L| }[/math] almost coincides with the usual quantization of the angular momentum operator on the plane [math]\displaystyle{ L_z }[/math]. For the 3D case, the EBK method for the total angular momentum is equivalent to the Langer correction.

See also

References

  1. Stone, A.D. (August 2005). "Einstein's unknown insight and the problem of quantizing chaos". Physics Today 58 (8): 37–43. doi:10.1063/1.2062917. Bibcode2005PhT....58h..37S. https://www.eng.yale.edu/stonegroup/publications/phys_today.pdf. 
  2. Curtis, L.G.; Ellis, D.G. (2004). "Use of the Einstein–Brillouin–Keller action quantization". American Journal of Physics 72 (12): 1521–1523. doi:10.1119/1.1768554. Bibcode2004AmJPh..72.1521C. 
  3. Berry, M.V.; Tabor, M. (1976). "Closed orbits and the regular bound spectrum". Proceedings of the Royal Society A 349 (1656): 101–123. doi:10.1098/rspa.1976.0062. Bibcode1976RSPSA.349..101B. 
  4. Berry, M.V.; Tabor, M. (1977). "Calculating the bound spectrum by path summation in action-angle variables". Journal of Physics A 10 (3): 371. doi:10.1088/0305-4470/10/3/009. Bibcode1977JPhA...10..371B. 
  5. Tannenbaum, E.D.; Heller, E. (2001). "Semiclassical Quantization Using Invariant Tori: A Gradient-Descent Approach". Journal of Physical Chemistry A 105 (12): 2801–2813. doi:10.1021/jp004371d. 
  6. Brack, M.; Bhaduri, R.K. (1997). Semiclassical Physics. Adison-Weasly Publishing. 
  7. Basu, P.K. (1997). Theory of Optical Processes in Semiconductors: Bulk and Microstructures. Oxford University Press.