Physics:Einstein–Brillouin–Keller method
The Einstein–Brillouin–Keller method (EBK) is a semiclassical method (named after Albert Einstein, Léon Brillouin, and Joseph B. Keller) used to compute eigenvalues in quantum-mechanical systems. EBK quantization is an improvement from Bohr-Sommerfeld quantization which did not consider the caustic phase jumps at classical turning points.[1] This procedure is able to reproduce exactly the spectrum of the 3D harmonic oscillator, particle in a box, and even the relativistic fine structure of the hydrogen atom.[2]
In 1976–1977, Michael Berry and M. Tabor derived an extension to Gutzwiller trace formula for the density of states of an integrable system starting from EBK quantization.[3][4]
There have been a number of recent results on computational issues related to this topic, for example, the work of Eric J. Heller and Emmanuel David Tannenbaum using a partial differential equation gradient descent approach.[5]
Procedure
Given a separable classical system defined by coordinates [math]\displaystyle{ (q_i,p_i);i\in\{1,2,\cdots,d\} }[/math], in which every pair [math]\displaystyle{ (q_i,p_i) }[/math] describes a closed function or a periodic function in [math]\displaystyle{ q_i }[/math], the EBK procedure involves quantizing the line integrals of [math]\displaystyle{ p_i }[/math] over the closed orbit of [math]\displaystyle{ q_i }[/math]:
- [math]\displaystyle{ I_i=\frac{1}{2\pi}\oint p_i dq_i = \hbar \left(n_i+\frac{\mu_i}{4}+\frac{b_i}{2}\right) }[/math]
where [math]\displaystyle{ I_i }[/math] is the action-angle coordinate, [math]\displaystyle{ n_i }[/math] is a positive integer, and [math]\displaystyle{ \mu_i }[/math] and [math]\displaystyle{ b_i }[/math] are Maslov indexes. [math]\displaystyle{ \mu_i }[/math] corresponds to the number of classical turning points in the trajectory of [math]\displaystyle{ q_i }[/math] (Dirichlet boundary condition), and [math]\displaystyle{ b_i }[/math] corresponds to the number of reflections with a hard wall (Neumann boundary condition).[6]
Examples
1D Harmonic oscillator
The Hamiltonian of a simple harmonic oscillator is given by
- [math]\displaystyle{ H=\frac{p^2}{2m}+\frac{m\omega^2x^2}{2} }[/math]
where [math]\displaystyle{ p }[/math] is the linear momentum and [math]\displaystyle{ x }[/math] the position coordinate. The action variable is given by
- [math]\displaystyle{ I=\frac{2}{\pi}\int_0^{x_0}\sqrt{2mE-m^2\omega^2x^2}\mathrm{d}x }[/math]
where we have used that [math]\displaystyle{ H=E }[/math] is the energy and that the closed trajectory is 4 times the trajectory from 0 to the turning point [math]\displaystyle{ x_0=\sqrt{2E/m\omega^2} }[/math].
The integral turns out to be
- [math]\displaystyle{ E=I\omega }[/math],
which under EBK quantization there are two soft turning points in each orbit [math]\displaystyle{ \mu_x=2 }[/math] and [math]\displaystyle{ b_x=0 }[/math]. Finally, that yields
- [math]\displaystyle{ E=\hbar\omega(n+1/2) }[/math],
which is the exact result for quantization of the quantum harmonic oscillator.
2D hydrogen atom
The Hamiltonian for a non-relativistic electron (electric charge [math]\displaystyle{ e }[/math]) in a hydrogen atom is:
- [math]\displaystyle{ H=\frac{p_r^2}{2m}+\frac{p_\varphi^2}{2mr^2}-\frac{e^2}{4\pi\epsilon_{0} r} }[/math]
where [math]\displaystyle{ p_r }[/math] is the canonical momentum to the radial distance [math]\displaystyle{ r }[/math], and [math]\displaystyle{ p_\varphi }[/math] is the canonical momentum of the azimuthal angle [math]\displaystyle{ \varphi }[/math]. Take the action-angle coordinates:
- [math]\displaystyle{ I_\varphi=\text{constant}=|L| }[/math]
For the radial coordinate [math]\displaystyle{ r }[/math]:
- [math]\displaystyle{ p_r=\sqrt{2mE-\frac{L^2}{r^2}+\frac{e^2}{4\pi\epsilon_0 r}} }[/math]
- [math]\displaystyle{ I_r=\frac{1}{\pi}\int_{r_1}^{r_2} p_r dr = \frac{me^2}{4\pi\epsilon_0\sqrt{-2mE}}-|L| }[/math]
where we are integrating between the two classical turning points [math]\displaystyle{ r_1,r_2 }[/math] ([math]\displaystyle{ \mu_r=2 }[/math])
- [math]\displaystyle{ E=-\frac{me^4}{32\pi^2\epsilon_0^2(I_r+I_\varphi)^2} }[/math]
Using EBK quantization [math]\displaystyle{ b_r=\mu_\varphi=b_\varphi=0,n_\varphi=m }[/math] :
- [math]\displaystyle{ I_\varphi=\hbar m\quad;\quad m=0,1,2,\cdots }[/math]
- [math]\displaystyle{ I_r=\hbar(n_r+1/2)\quad;\quad n_r=0,1,2,\cdots }[/math]
- [math]\displaystyle{ E=-\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2(n_r+m+1/2)^2} }[/math]
and by making [math]\displaystyle{ n=n_r+m+1 }[/math] the spectrum of the 2D hydrogen atom [7] is recovered :
- [math]\displaystyle{ E_n=-\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2(n-1/2)^2}\quad;\quad n=1,2,3,\cdots }[/math]
Note that for this case [math]\displaystyle{ I_\varphi=|L| }[/math] almost coincides with the usual quantization of the angular momentum operator on the plane [math]\displaystyle{ L_z }[/math]. For the 3D case, the EBK method for the total angular momentum is equivalent to the Langer correction.
See also
References
- ↑ Stone, A.D. (August 2005). "Einstein's unknown insight and the problem of quantizing chaos". Physics Today 58 (8): 37–43. doi:10.1063/1.2062917. Bibcode: 2005PhT....58h..37S. https://www.eng.yale.edu/stonegroup/publications/phys_today.pdf.
- ↑ Curtis, L.G.; Ellis, D.G. (2004). "Use of the Einstein–Brillouin–Keller action quantization". American Journal of Physics 72 (12): 1521–1523. doi:10.1119/1.1768554. Bibcode: 2004AmJPh..72.1521C.
- ↑ Berry, M.V.; Tabor, M. (1976). "Closed orbits and the regular bound spectrum". Proceedings of the Royal Society A 349 (1656): 101–123. doi:10.1098/rspa.1976.0062. Bibcode: 1976RSPSA.349..101B.
- ↑ Berry, M.V.; Tabor, M. (1977). "Calculating the bound spectrum by path summation in action-angle variables". Journal of Physics A 10 (3): 371. doi:10.1088/0305-4470/10/3/009. Bibcode: 1977JPhA...10..371B.
- ↑ Tannenbaum, E.D.; Heller, E. (2001). "Semiclassical Quantization Using Invariant Tori: A Gradient-Descent Approach". Journal of Physical Chemistry A 105 (12): 2801–2813. doi:10.1021/jp004371d.
- ↑ Brack, M.; Bhaduri, R.K. (1997). Semiclassical Physics. Adison-Weasly Publishing.
- ↑ Basu, P.K. (1997). Theory of Optical Processes in Semiconductors: Bulk and Microstructures. Oxford University Press.
Original source: https://en.wikipedia.org/wiki/Einstein–Brillouin–Keller method.
Read more |