Legendre moment
In mathematics, Legendre moments are a type of image moment and are achieved by using the Legendre polynomial. Legendre moments are used in areas of image processing including: pattern and object recognition, image indexing, line fitting, feature extraction, edge detection, and texture analysis.[1] Legendre moments have been studied as a means to reduce image moment calculation complexity by limiting the amount of information redundancy through approximation.[2]
Legendre moments[3]
With order of m + n, and object intensity function f(x,y):
- [math]\displaystyle{ L_{mn}=\frac{(2m+1)(2n+1)} 4 \int\limits_{-1}^1 \int\limits_{-1}^1 P_m(x) P_n(y)f(x,y) \,dx\, dy }[/math]
where m,n = 1, 2, 3, ...∞ with the nth-order Legendre polynomials being:
- [math]\displaystyle{ P_n(x)=\sum_{k=0}^n a_{k,n}x^k=\frac{(-1)^n}{2^n n!} \left( \frac{d}{dx} \right) [(1-x^2)^n] }[/math]
which can also be written:
- [math]\displaystyle{ \begin{align} P_n(x) & =\sum_{k=0}^{D(n)}(-1)^k \frac{(2n-2k)!}{2^n k!(n-k)!(n-2k)!} x^{n-2k} \\[5pt] & = \frac{(2n)!}{2^n(n!)^2}x^n-\frac{(2n-2)!}{2^n 1!(n-1)!(n-2)!} x^{n-2} + \cdots \end{align} }[/math]
where D(n) = floor(n/2). The set of Legendre polynomials {Pn(x)} form an orthogonal set on the interval [−1,1]:
- [math]\displaystyle{ \int_{-1}^1 P_n(x)P_m(x) \, dx = \frac{2}{2n+1}\delta_{nm} }[/math]
A recurrence relation can be used to compute the Legendre polynomial:
- [math]\displaystyle{ (n+1)P_{n+1}(x)-(2n+1)xP_n(x)+nP_{n-1}(x)=0 }[/math]
f(x,y) can be written as an infinite series expansion in terms of Legendre polynomials [−1 ≤ x,y ≤ 1.]:
- [math]\displaystyle{ f(x,y)=\sum_{m=0}^\infty \sum_{n=0}^\infty \lambda_{mn}P_m(x)P_n(y) }[/math]
See also
- Image moment
- Legendre polynomial
- Zernike polynomials
References
- ↑ Lakshmi Deepika, C. et al. "Palmprint authentication using modified legendre moments", Procedia Computer Science, 2010, Vol.2, pp. 164–172
- ↑ Huazhong Shu, et al. "An Efficient Method for Computation of Legendre Moments", Academic Press, 2000
- ↑ Pew-Thian Yap. "An Efficient Method for the Computation of Legendre Moments", IEEE Transactions on Pattern Analysis and Machine Intelligence ( Volume: 27, Issue: 12, Dec. 2005 )
Original source: https://en.wikipedia.org/wiki/Legendre moment.
Read more |