Kaplan–Yorke conjecture

From HandWiki
Revision as of 04:47, 27 June 2023 by Gametune (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In applied mathematics, the Kaplan–Yorke conjecture concerns the dimension of an attractor, using Lyapunov exponents.[1][2] By arranging the Lyapunov exponents in order from largest to smallest [math]\displaystyle{ \lambda_1\geq\lambda_2\geq\dots\geq\lambda_n }[/math], let j be the largest index for which

[math]\displaystyle{ \sum_{i=1}^j \lambda_i \geqslant 0 }[/math]

and

[math]\displaystyle{ \sum_{i=1}^{j+1} \lambda_i \lt 0. }[/math]

Then the conjecture is that the dimension of the attractor is

[math]\displaystyle{ D=j+\frac{\sum_{i=1}^j\lambda_i}{|\lambda_{j+1}|}. }[/math]

This idea is used for the definition of the Lyapunov dimension.[3]

Examples

Especially for chaotic systems, the Kaplan–Yorke conjecture is a useful tool in order to estimate the fractal dimension and the Hausdorff dimension of the corresponding attractor.[4][3]

  • The Hénon map with parameters a = 1.4 and b = 0.3 has the ordered Lyapunov exponents [math]\displaystyle{ \lambda_1=0.603 }[/math] and [math]\displaystyle{ \lambda_2=-2.34 }[/math]. In this case, we find j = 1 and the dimension formula reduces to
[math]\displaystyle{ D=j+\frac{\lambda_1}{|\lambda_2|}=1+\frac{0.603}{|{-2.34}|}=1.26. }[/math]
  • The Lorenz system shows chaotic behavior at the parameter values [math]\displaystyle{ \sigma=16 }[/math], [math]\displaystyle{ \rho=45.92 }[/math] and [math]\displaystyle{ \beta=4.0 }[/math]. The resulting Lyapunov exponents are {2.16, 0.00, −32.4}. Noting that j = 2, we find
[math]\displaystyle{ D=2+\frac{2.16 + 0.00}{|-32.4|}=2.07. }[/math]

References

  1. Kaplan, J.; Yorke, J. (1979). "Chaotic behavior of multidimensional difference equations". in Peitgen, H. O.; Walther, H. O.. Functional Differential Equations and the Approximation of Fixed Points. Lecture Notes in Mathematics. 730. Berlin: Springer. pp. 204–227. ISBN 978-0-387-09518-9. http://yorke.umd.edu/Yorke_papers_most_cited_and_post2000/1979_C11_Kaplan_multidimensional.pdf. 
  2. Frederickson, P.; Kaplan, J.; Yorke, E.; Yorke, J. (1983). "The Lyapunov Dimension of Strange Attractors". J. Diff. Eqs. 49 (2): 185–207. doi:10.1016/0022-0396(83)90011-6. Bibcode1983JDE....49..185F. 
  3. 3.0 3.1 Kuznetsov, Nikolay; Reitmann, Volker (2020). Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Cham: Springer. https://www.springer.com/gp/book/9783030509866. 
  4. Wolf, A.; Swift, A.; Jack, B.; Swinney, H. L.; Vastano, J. A. (1985). "Determining Lyapunov Exponents from a Time Series". Physica D 16 (3): 285–317. doi:10.1016/0167-2789(85)90011-9. Bibcode1985PhyD...16..285W.