Singularity spectrum

From HandWiki
Revision as of 06:06, 27 June 2023 by ScienceGen (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Mathematical function

The singularity spectrum is a function used in multifractal analysis to describe the fractal dimension of a subset of points of a function belonging to a group of points that have the same Hölder exponent. Intuitively, the singularity spectrum gives a value for how "fractal" a set of points are in a function.

More formally, the singularity spectrum [math]\displaystyle{ D(\alpha) }[/math] of a function, [math]\displaystyle{ f(x) }[/math], is defined as:

[math]\displaystyle{ D(\alpha) = D_F\{x, \alpha(x) = \alpha\} }[/math]

Where [math]\displaystyle{ \alpha(x) }[/math] is the function describing the Hölder exponent, [math]\displaystyle{ \alpha(x) }[/math] of [math]\displaystyle{ f(x) }[/math] at the point [math]\displaystyle{ x }[/math]. [math]\displaystyle{ D_F\{\cdot\} }[/math] is the Hausdorff dimension of a point set.

See also

References