Dirichlet hyperbola method
From HandWiki
In number theory, the Dirichlet hyperbola method is a technique to evaluate the sum
- [math]\displaystyle{ \sum_{n \le x} f(n) }[/math]
where [math]\displaystyle{ f, g, h }[/math] are multiplicative functions with [math]\displaystyle{ f = g*h }[/math], where [math]\displaystyle{ * }[/math] is the Dirichlet convolution. It uses the fact that
- [math]\displaystyle{ \sum_{n\leq x}f(n) = \sum_{n\leq x}\sum_{ab=n} g(a)h(b) = \sum_{a\leq\sqrt{x}}\sum_{b\leq\frac{x}{a}} g(a)h(b) + \sum_{b\leq\sqrt{x}}\sum_{a\leq\frac{x}{b}} g(a)h(b) - \sum_{a\leq\sqrt{x}}\sum_{b\leq\sqrt{x}} g(a)h(b). }[/math]
Uses
Let [math]\displaystyle{ \tau (n) }[/math] be the number-of-divisors function. Since [math]\displaystyle{ \tau = 1 * 1 }[/math], the Dirichlet hyperbola method gives us the result[1]
- [math]\displaystyle{ \sum_{n \le x} \tau (n) = x \log x + (2\gamma - 1)x + O(\sqrt x). }[/math]
Wherer [math]\displaystyle{ \gamma }[/math] is the Euler–Mascheroni constant.
See also
References
- ↑ Tenenbaum, Gérald (2015-07-16) (in en). Introduction to Analytic and Probabilistic Number Theory. American Mathematical Soc.. pp. 44. ISBN 9780821898543. https://books.google.com/books?id=UEk-CgAAQBAJ&dq=dirichlet+hyperbola+method&pg=PR15.
Original source: https://en.wikipedia.org/wiki/Dirichlet hyperbola method.
Read more |