Euler–Mascheroni constant

Short description: γ ≈ 0.5772, the limit of the difference between the harmonic series and the natural logarithm
The area of the blue region converges to the Euler–Mascheroni constant.

The Euler–Mascheroni constant (also called Euler's constant) is a mathematical constant recurring in analysis and number theory, usually denoted by the lowercase Greek letter gamma (γ).

It is defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by $\displaystyle{ \log: }$

\displaystyle{ \begin{align} \gamma &= \lim_{n\to\infty}\left(-\log n + \sum_{k=1}^n \frac1{k}\right)\\[5px] &=\int_1^\infty\left(-\frac1x+\frac1{\lfloor x\rfloor}\right)\,dx. \end{align} }

Here, $\displaystyle{ \lfloor x\rfloor }$ represents the floor function.

The numerical value of the Euler–Mascheroni constant, to 50 decimal places, is:[1]

0.57721566490153286060651209008240243104215933593992...
 Unsolved problem in mathematics:Is Euler's constant irrational? If so, is it transcendental?(more unsolved problems in mathematics)
 Binary 0.1001001111000100011001111110001101111101... Decimal 0.5772156649015328606065120900824024310421... Hexadecimal 0.93C467E37DB0C7A4D1BE3F810152CB56A1CECC3A... Continued fraction [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, ...][2](It is not known whether this continued fraction is finite, infinite periodic or infinite non-periodic. Shown in linear notation)

History

The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43). Euler used the notations C and O for the constant. In 1790, Italian mathematician Lorenzo Mascheroni used the notations A and a for the constant. The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time perhaps because of the constant's connection to the gamma function.[3] For example, the Germany mathematician Carl Anton Bretschneider used the notation γ in 1835[4] and Augustus De Morgan used it in a textbook published in parts from 1836 to 1842.[5]

Appearances

The Euler–Mascheroni constant appears, among other places, in the following (where '*' means that this entry contains an explicit equation):

Properties

The number γ has not been proved algebraic or transcendental. In fact, it is not even known whether γ is irrational. Using a continued fraction analysis, Papanikolaou showed in 1997 that if γ is rational, its denominator must be greater than 10244663.[7][8] The ubiquity of γ revealed by the large number of equations below makes the irrationality of γ a major open question in mathematics.[9]

However, some progress was made. Kurt Mahler showed in 1968 that the number $\displaystyle{ \frac{\pi}{2}\frac{Y_0(2)}{J_0(2)}-\gamma }$ is transcendental (here, $\displaystyle{ J_\alpha(x) }$ and $\displaystyle{ Y_\alpha(x) }$ are Bessel functions).[10][3] In 2009 Alexander Aptekarev proved that at least one of the Euler–Mascheroni constant γ and the Euler–Gompertz constant δ is irrational.[11] This result was improved in 2012 by Tanguy Rivoal, who proved that at least one of them is transcendental.[12][3]

In 2010 M. Ram Murty and N. Saradha considered an infinite list of numbers containing γ/4 and showed that all but at most one of them are transcendental.[3][13] In 2013 M. Ram Murty and A. Zaytseva again considered an infinite list of numbers containing γ and showed that all but at most one are transcendental.[3][14][clarification needed]

Relation to gamma function

γ is related to the digamma function Ψ, and hence the derivative of the gamma function Γ, when both functions are evaluated at 1. Thus:

$\displaystyle{ -\gamma = \Gamma'(1) = \Psi(1). }$

This is equal to the limits:

\displaystyle{ \begin{align}-\gamma &= \lim_{z\to 0}\left(\Gamma(z) - \frac1{z}\right) \\&= \lim_{z\to 0}\left(\Psi(z) + \frac1{z}\right).\end{align} }

Further limit results are:[15]

\displaystyle{ \begin{align} \lim_{z\to 0}\frac1{z}\left(\frac1{\Gamma(1+z)} - \frac1{\Gamma(1-z)}\right) &= 2\gamma \\ \lim_{z\to 0}\frac1{z}\left(\frac1{\Psi(1-z)} - \frac1{\Psi(1+z)}\right) &= \frac{\pi^2}{3\gamma^2}. \end{align} }

A limit related to the beta function (expressed in terms of gamma functions) is

\displaystyle{ \begin{align} \gamma &= \lim_{n\to\infty}\left(\frac{ \Gamma\left(\frac1{n}\right) \Gamma(n+1)\, n^{1+\frac1{n}}}{\Gamma\left(2+n+\frac1{n}\right)} - \frac{n^2}{n+1}\right) \\ &= \lim\limits_{m\to\infty}\sum_{k=1}^m{m \choose k}\frac{(-1)^k}{k}\log\big(\Gamma(k+1)\big). \end{align} }

Relation to the zeta function

γ can also be expressed as an infinite sum whose terms involve the Riemann zeta function evaluated at positive integers:

\displaystyle{ \begin{align}\gamma &= \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{m} \\ &= \log\frac4{\pi} + \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{2^{m-1}m}.\end{align} }

Other series related to the zeta function include:

\displaystyle{ \begin{align} \gamma &= \tfrac3{2}- \log 2 - \sum_{m=2}^\infty (-1)^m\,\frac{m-1}{m}\big(\zeta(m)-1\big) \\ &= \lim_{n\to\infty}\left(\frac{2n-1}{2n} - \log n + \sum_{k=2}^n \left(\frac1{k} - \frac{\zeta(1-k)}{n^k}\right)\right) \\ &= \lim_{n\to\infty}\left(\frac{2^n}{e^{2^n}} \sum_{m=0}^\infty \frac{2^{mn}}{(m+1)!} \sum_{t=0}^m \frac1{t+1} - n \log 2+ O \left (\frac1{2^{n}\, e^{2^n}}\right)\right).\end{align} }

The error term in the last equation is a rapidly decreasing function of n. As a result, the formula is well-suited for efficient computation of the constant to high precision.

Other interesting limits equaling the Euler–Mascheroni constant are the antisymmetric limit:[16]

\displaystyle{ \begin{align} \gamma &= \lim_{s\to 1^+}\sum_{n=1}^\infty \left(\frac1{n^s}-\frac1{s^n}\right) \\&= \lim_{s\to 1}\left(\zeta(s) - \frac{1}{s-1}\right) \\&= \lim_{s\to 0}\frac{\zeta(1+s)+\zeta(1-s)}{2} \end{align} }

and the following formula, established in 1898 by de la Vallée-Poussin:

$\displaystyle{ \gamma = \lim_{n\to\infty}\frac1{n}\, \sum_{k=1}^n \left(\left\lceil \frac{n}{k} \right\rceil - \frac{n}{k}\right) }$

where $\displaystyle{ \lceil\, \rceil }$ are ceiling brackets. This formula indicates that when taking any positive integer n and dividing it by each positive integer m less than n, the average fraction by which the quotient n/m falls short of the next integer tends to $\displaystyle{ \gamma }$ (rather than 0.5) as n tends to infinity.

Closely related to this is the rational zeta series expression. By taking separately the first few terms of the series above, one obtains an estimate for the classical series limit:

$\displaystyle{ \gamma = \sum_{k=1}^n \frac1{k} - \log n -\sum_{m=2}^\infty \frac{\zeta(m,n+1)}{m}, }$

where ζ(s,k) is the Hurwitz zeta function. The sum in this equation involves the harmonic numbers, Hn. Expanding some of the terms in the Hurwitz zeta function gives:

$\displaystyle{ H_n = \log(n) + \gamma + \frac1{2n} - \frac1{12n^2} + \frac1{120n^4} - \varepsilon, }$

where 0 < ε < 1/252n6.

γ can also be expressed as follows where A is the Glaisher–Kinkelin constant:

$\displaystyle{ \gamma =12\,\log(A)-\log(2\pi)+\frac{6}{\pi^2}\,\zeta'(2) }$

γ can also be expressed as follows, which can be proven by expressing the zeta function as a Laurent series:

$\displaystyle{ \gamma=\lim_{n\to\infty}\biggl(-n+\zeta\Bigl(\frac{n+1}{n}\Bigr)\biggr) }$

Integrals

γ equals the value of a number of definite integrals:

\displaystyle{ \begin{align}\gamma &= - \int_0^\infty e^{-x} \log x \,dx \\ &= -\int_0^1 \log\left(\log\frac 1 x \right) dx \\ &= \int_0^\infty \left(\frac1{e^x-1}-\frac1{x\cdot e^x} \right)dx \\ &= \int_0^1\left(\frac1{\log x} + \frac1{1-x}\right)dx\\ &= \int_0^\infty \left(\frac1{1+x^k}-e^{-x}\right)\frac{dx}{x},\quad k\gt 0\\ &= 2\int_0^\infty \frac{e^{-x^2}-e^{-x}}{x} \, dx ,\\ &= \int_0^1 H_x \, dx, \end{align} }

where Hx is the fractional harmonic number.

Definite integrals in which γ appears include:

\displaystyle{ \begin{align}\int_0^\infty e^{-x^2} \log x \,dx &= -\frac{(\gamma+2\log 2)\sqrt{\pi}}{4} \\ \int_0^\infty e^{-x} \log^2 x \,dx &= \gamma^2 + \frac{\pi^2}{6} . \end{align} }

One can express γ using a special case of Hadjicostas's formula as a double integral[9][17] with equivalent series:

\displaystyle{ \begin{align}\gamma &= \int_0^1 \int_0^1 \frac{x-1}{(1-xy)\log xy}\,dx\,dy \\&= \sum_{n=1}^\infty \left(\frac 1 n -\log\frac{n+1} n \right).\end{align} }

An interesting comparison by Sondow[17] is the double integral and alternating series

\displaystyle{ \begin{align} \log\frac 4 \pi &= \int_0^1 \int_0^1 \frac{x-1}{(1+xy)\log xy} \,dx\,dy \\&= \sum_{n=1}^\infty \left((-1)^{n-1}\left(\frac 1 n -\log\frac{n+1} n \right)\right).\end{align} }

It shows that log 4/π may be thought of as an "alternating Euler constant".

The two constants are also related by the pair of series[18]

\displaystyle{ \begin{align} \gamma &= \sum_{n=1}^\infty \frac{N_1(n) + N_0(n)}{2n(2n+1)} \\ \log\frac4{\pi} &= \sum_{n=1}^\infty \frac{N_1(n) - N_0(n)}{2n(2n+1)} ,\end{align} }

where N1(n) and N0(n) are the number of 1s and 0s, respectively, in the base 2 expansion of n.

We have also Catalan's 1875 integral[19]

$\displaystyle{ \gamma = \int_0^1 \left(\frac1{1+x}\sum_{n=1}^\infty x^{2^n-1}\right)\,dx. }$

Series expansions

In general,

$\displaystyle{ \gamma = \lim_{n \to \infty}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3} + \ldots + \frac{1}{n} - \log(n+\alpha) \right) \equiv \lim_{n \to \infty} \gamma_n(\alpha) }$

for any $\displaystyle{ \alpha \gt -n }$. However, the rate of convergence of this expansion depends significantly on $\displaystyle{ \alpha }$. In particular, $\displaystyle{ \gamma_n(1/2) }$ exhibits much more rapid convergence than the conventional expansion $\displaystyle{ \gamma_n(0) }$.[20][21] This is because

$\displaystyle{ \frac{1}{2(n+1)} \lt \gamma_n(0) - \gamma \lt \frac{1}{2n}, }$

while

$\displaystyle{ \frac{1}{24(n+1)^2} \lt \gamma_n(1/2) - \gamma \lt \frac{1}{24n^2}. }$

Even so, there exist other series expansions which converge more rapidly than this; some of these are discussed below.

Euler showed that the following infinite series approaches γ:

$\displaystyle{ \gamma = \sum_{k=1}^\infty \left(\frac 1 k - \log\left(1+\frac 1 k \right)\right). }$

The series for γ is equivalent to a series Nielsen found in 1897:[15][22]

$\displaystyle{ \gamma = 1 - \sum_{k=2}^\infty (-1)^k\frac{\left\lfloor\log_2 k\right\rfloor}{k+1}. }$

In 1910, Vacca found the closely related series[23][24][25][26][27][15][28]

\displaystyle{ \begin{align} \gamma & = \sum_{k=2}^\infty (-1)^k\frac{\left\lfloor\log_2 k\right\rfloor} k \\[5pt] & = \tfrac12-\tfrac13 + 2\left(\tfrac14 - \tfrac15 + \tfrac16 - \tfrac17\right) + 3\left(\tfrac18 - \tfrac19 + \tfrac1{10} - \tfrac1{11} + \cdots - \tfrac1{15}\right) + \cdots, \end{align} }

where log2 is the logarithm to base 2 and ⌊ ⌋ is the floor function.

In 1926 he found a second series:

\displaystyle{ \begin{align} \gamma + \zeta(2) & = \sum_{k=2}^\infty \left( \frac1{\left\lfloor\sqrt{k}\right\rfloor^2} - \frac1{k}\right) \\[5pt] & = \sum_{k=2}^\infty \frac{k - \left\lfloor\sqrt{k}\right\rfloor^2}{k \left\lfloor \sqrt{k} \right\rfloor^2} \\[5pt] &= \frac12 + \frac23 + \frac1{2^2}\sum_{k=1}^{2\cdot 2} \frac{k}{k+2^2} + \frac1{3^2}\sum_{k=1}^{3\cdot 2} \frac{k}{k+3^2} + \cdots \end{align} }

From the MalmstenKummer expansion for the logarithm of the gamma function[29] we get:

$\displaystyle{ \gamma = \log\pi - 4\log\left(\Gamma(\tfrac34)\right) + \frac 4 \pi \sum_{k=1}^\infty (-1)^{k+1}\frac{\log(2k+1)}{2k+1}. }$

An important expansion for Euler's constant is due to Fontana and Mascheroni

$\displaystyle{ \gamma = \sum_{n=1}^\infty \frac{|G_n|}{n} = \frac12 + \frac1{24} + \frac1{72} + \frac{19}{2880} + \frac3{800} + \cdots, }$

where Gn are Gregory coefficients[15][28][30] This series is the special case $\displaystyle{ k=1 }$ of the expansions

\displaystyle{ \begin{align} \gamma &= H_{k-1} - \log k + \sum_{n=1}^{\infty}\frac{(n-1)!|G_n|}{k(k+1) \cdots (k+n-1)} && \\ &= H_{k-1} - \log k + \frac1{2k} + \frac1{12k(k+1)} + \frac1{12k(k+1)(k+2)} + \frac{19}{120k(k+1)(k+2)(k+3)} + \cdots && \end{align} }

convergent for $\displaystyle{ k=1,2,\ldots }$

A similar series with the Cauchy numbers of the second kind Cn is[28][31]

$\displaystyle{ \gamma = 1 - \sum_{n=1}^\infty \frac{C_{n}}{n \, (n+1)!} =1- \frac{1}{4} -\frac{5}{72} - \frac{1}{32} - \frac{251}{14400} - \frac{19}{1728} - \ldots }$

Blagouchine (2018) found an interesting generalisation of the Fontana-Mascheroni series

$\displaystyle{ \gamma=\sum_{n=1}^\infty\frac{(-1)^{n+1}}{2n}\Big\{\psi_{n}(a)+ \psi_{n}\Big(-\frac{a}{1+a}\Big)\Big\}, \quad a\gt -1 }$

where ψn(a) are the Bernoulli polynomials of the second kind, which are defined by the generating function

$\displaystyle{ \frac{z(1+z)^s}{\log(1+z)}= \sum_{n=0}^\infty z^n \psi_n(s) ,\qquad |z|\lt 1, }$

For any rational a this series contains rational terms only. For example, at a = 1, it becomes[32][33]

$\displaystyle{ \gamma=\frac{3}{4} - \frac{11}{96} - \frac{1}{72} - \frac{311}{46080} - \frac{5}{1152} - \frac{7291}{2322432} - \frac{243}{100352} - \ldots }$

Other series with the same polynomials include these examples:

$\displaystyle{ \gamma= -\log(a+1) - \sum_{n=1}^\infty\frac{(-1)^n \psi_{n}(a)}{n},\qquad \Re(a)\gt -1 }$

and

$\displaystyle{ \gamma= -\frac{2}{1+2a} \left\{\log\Gamma(a+1) -\frac{1}{2}\log(2\pi) + \frac{1}{2} + \sum_{n=1}^\infty\frac{(-1)^n \psi_{n+1}(a)}{n}\right\},\qquad \Re(a)\gt -1 }$

where Γ(a) is the gamma function.[30]

A series related to the Akiyama-Tanigawa algorithm is

$\displaystyle{ \gamma= \log(2\pi) - 2 - 2 \sum_{n=1}^\infty\frac{(-1)^n G_{n}(2)}{n}= \log(2\pi) - 2 + \frac{2}{3} + \frac{1}{24}+ \frac{7}{540} + \frac{17}{2880}+ \frac{41}{12600} + \ldots }$

where Gn(2) are the Gregory coefficients of the second order.[30]

Series of prime numbers:

$\displaystyle{ \gamma = \lim_{n\to\infty}\left(\log n - \sum_{p\le n}\frac{\log p}{p-1}\right). }$

Asymptotic expansions

γ equals the following asymptotic formulas (where Hn is the nth harmonic number):

$\displaystyle{ \gamma \sim H_n - \log n - \frac1{2n} + \frac1{12n^2} - \frac1{120n^4} + \cdots }$ (Euler)
$\displaystyle{ \gamma \sim H_n - \log\left({n + \frac1{2} + \frac1{24n} - \frac1{48n^3} + \cdots}\right) }$ (Negoi)
$\displaystyle{ \gamma \sim H_n - \frac{\log n + \log(n+1)}{2} - \frac1{6n(n+1)} + \frac1{30n^2(n+1)^2} - \cdots }$ (Cesàro)

The third formula is also called the Ramanujan expansion.

Alabdulmohsin derived closed-form expressions for the sums of errors of these approximations.[31] He showed that (Theorem A.1): $\displaystyle{ \sum_{n=1}^\infty \log n +\gamma - H_n + \frac{1}{2n} = \frac{\log (2\pi)-1-\gamma}{2} }$ $\displaystyle{ \sum_{n=1}^\infty \log \sqrt{n(n+1)} +\gamma - H_n = \frac{\log (2\pi)-1}{2}-\gamma }$ $\displaystyle{ \sum_{n=1}^\infty (-1)^n\Big(\log n +\gamma - H_n\Big) = \frac{\log \pi-\gamma}{2} }$

Exponential

The constant eγ is important in number theory. Some authors denote this quantity simply as γ′. eγ equals the following limit, where pn is the nth prime number:

$\displaystyle{ e^\gamma = \lim_{n\to\infty}\frac1{\log p_n} \prod_{i=1}^n \frac{p_i}{p_i-1}. }$

This restates the third of Mertens' theorems.[34] The numerical value of eγ is:[35]

1.78107241799019798523650410310717954916964521430343....

Other infinite products relating to eγ include:

\displaystyle{ \begin{align} \frac{e^{1+\frac{\gamma}{2}}}{\sqrt{2\pi}} &= \prod_{n=1}^\infty e^{-1+\frac1{2n}}\left(1+\frac1{n}\right)^n \\ \frac{e^{3+2\gamma}}{2\pi} &= \prod_{n=1}^\infty e^{-2+\frac2{n}}\left(1+\frac2{n}\right)^n. \end{align} }

These products result from the Barnes G-function.

$\displaystyle{ e^{\gamma} = \sqrt{\frac2{1}} \cdot \sqrt[3]{\frac{2^2}{1\cdot 3}} \cdot \sqrt[4]{\frac{2^3\cdot 4}{1\cdot 3^3}} \cdot \sqrt[5]{\frac{2^4\cdot 4^4}{1\cdot 3^6\cdot 5}} \cdots }$

where the nth factor is the (n + 1)th root of

$\displaystyle{ \prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}}. }$

This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow using hypergeometric functions.[36]

It also holds that[37]

$\displaystyle{ \frac{e^\frac{\pi}{2}+e^{-\frac{\pi}{2}}}{\pi e^\gamma}=\prod_{n=1}^\infty\left(e^{-\frac{1}{n}}\left(1+\frac{1}{n}+\frac{1}{2n^2}\right)\right). }$

Continued fraction

The continued fraction expansion of γ is of the form [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...],[2] which has no apparent pattern. The continued fraction is known to have at least 475,006 terms,[7] and it has infinitely many terms if and only if γ is irrational.

Generalizations

abm(x) = γx

Euler's generalized constants are given by

$\displaystyle{ \gamma_\alpha = \lim_{n\to\infty}\left(\sum_{k=1}^n \frac1{k^\alpha} - \int_1^n \frac1{x^\alpha}\,dx\right), }$

for 0 < α < 1, with γ as the special case α = 1.[38] This can be further generalized to

$\displaystyle{ c_f = \lim_{n\to\infty}\left(\sum_{k=1}^n f(k) - \int_1^n f(x)\,dx\right) }$

for some arbitrary decreasing function f. For example,

$\displaystyle{ f_n(x) = \frac{(\log x)^n}{x} }$

gives rise to the Stieltjes constants, and

$\displaystyle{ f_a(x) = x^{-a} }$

gives

$\displaystyle{ \gamma_{f_a} = \frac{(a-1)\zeta(a)-1}{a-1} }$

where again the limit

$\displaystyle{ \gamma = \lim_{a\to 1}\left(\zeta(a) - \frac1{a-1}\right) }$

appears.

A two-dimensional limit generalization is the Masser–Gramain constant.

Euler–Lehmer constants are given by summation of inverses of numbers in a common modulo class:[13]

$\displaystyle{ \gamma(a,q) = \lim_{x\to \infty}\left (\sum_{0\lt n\le x \atop n\equiv a \pmod q} \frac1{n}-\frac{\log x}{q}\right). }$

The basic properties are

\displaystyle{ \begin{align} \gamma(0,q) &= \frac{\gamma -\log q}{q}, \\ \sum_{a=0}^{q-1} \gamma(a,q)&=\gamma, \\ q\gamma(a,q) &= \gamma-\sum_{j=1}^{q-1}e^{-\frac{2\pi aij}{q}}\log\left(1-e^{\frac{2\pi ij}{q}}\right), \end{align} }

and if gcd(a,q) = d then

$\displaystyle{ q\gamma(a,q) = \frac{q}{d}\gamma\left(\frac{a}{d},\frac{q}{d}\right)-\log d. }$

Published digits

Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 20th–22nd and 31st-32nd decimal places; starting from the 20th digit, he calculated ...1811209008239 when the correct value is ...0651209008240.

Published Decimal Expansions of γ
Date Decimal digits Author Sources
1734 5 Leonhard Euler
1735 15 Leonhard Euler
1781 16 Leonhard Euler
1790 32 Lorenzo Mascheroni, with 20-22 and 31-32 wrong
1809 22 Johann G. von Soldner
1811 22 Carl Friedrich Gauss
1812 40 Friedrich Bernhard Gottfried Nicolai
1857 34 Christian Fredrik Lindman
1861 41 Ludwig Oettinger
1867 49 William Shanks
1871 99 James W.L. Glaisher
1871 101 William Shanks
1952 328 John William Wrench Jr.
1961 1050 Helmut Fischer and Karl Zeller
1962 1271 Donald Knuth [39]
1962 3566 Dura W. Sweeney
1973 4879 William A. Beyer and Michael S. Waterman
1977 20700 Richard P. Brent
1980 30100 Richard P. Brent & Edwin M. McMillan
1993 172000 Jonathan Borwein
1999 108000000 Patrick Demichel and Xavier Gourdon
March 13, 2009 29844489545 Alexander J. Yee & Raymond Chan [40][41]
December 22, 2013 119377958182 Alexander J. Yee [41]
March 15, 2016 160000000000 Peter Trueb [41]
May 18, 2016 250000000000 Ron Watkins [41]
August 23, 2017 477511832674 Ron Watkins [41]
May 26, 2020 600000000100 Seungmin Kim & Ian Cutress [41][42]

References

Footnotes

1. Sloane, N. J. A., ed. "Sequence A002852 (Continued fraction for Euler's constant)". OEIS Foundation.
2. Lagarias, Jeffrey C. (October 2013). "Euler's constant: Euler's work and modern developments". Bulletin of the American Mathematical Society 50 (4): 556. doi:10.1090/s0273-0979-2013-01423-x.
3. Bretschneider 1837, "γ = c = 0,577215 664901 532860 618112 090082 3.." on p. 260.
4. De Morgan, Augustus (1836–1842). The differential and integral calculus. London: Baldwin and Craddoc. "γ" on p. 578.
5. Caves, Carlton M.; Fuchs, Christopher A. (1996). "Quantum information: How much information in a state vector?". The Dilemma of Einstein, Podolsky and Rosen – 60 Years Later. Israel Physical Society. ISBN 9780750303941. OCLC 36922834. Bibcode1996quant.ph..1025C.
6. Haible, Bruno; Papanikolaou, Thomas (1998). Buhler, Joe P.. ed. "Fast multiprecision evaluation of series of rational numbers". Algorithmic Number Theory. Lecture Notes in Computer Science (Springer) 1423. doi:10.1007/bfb0054873. ISBN 9783540691136.
7. Papanikolaou, T. (1997). Entwurf und Entwicklung einer objektorientierten Bibliothek für algorithmische Zahlentheorie (Thesis) (in Deutsch). Universität des Saarlandes.
8. See also Sondow, Jonathan (2003). "Criteria for irrationality of Euler's constant". Proceedings of the American Mathematical Society 131 (11). doi:10.1090/S0002-9939-03-07081-3.
9. Mahler, Kurt; Mordell, Louis Joel (4 June 1968). "Applications of a theorem by A. B. Shidlovski". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 305 (1481). doi:10.1098/rspa.1968.0111. Bibcode1968RSPSA.305..149M.
10. Aptekarev, A. I. (28 February 2009). "On linear forms containing the Euler constant". arXiv:0902.1768 [math.NT].
11. Rivoal, Tanguy (2012). "On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant". Michigan Mathematical Journal 61 (2). doi:10.1307/mmj/1339011525. ISSN 0026-2285.
12. Murty, M. Ram; Zaytseva, Anastasia (2013). "Transcendence of Generalized Euler Constants". The American Mathematical Monthly 120 (1). doi:10.4169/amer.math.monthly.120.01.048. ISSN 0002-9890.
13. Krämer, Stefan (2005) (in de). Die Eulersche Konstante γ und verwandte Zahlen. University of Göttingen.
14. Sondow, Jonathan (1998). "An antisymmetric formula for Euler's constant". Mathematics Magazine 71. Retrieved 2006-05-29.
15. Sondow, Jonathan (2005), "Double integrals for Euler's constant and $\displaystyle{ \log \frac{4}{\pi} }$ and an analog of Hadjicostas's formula", American Mathematical Monthly 112 (1), doi:10.2307/30037385
16. Sondow, Jonathan (1 August 2005a). New Vacca-type rational series for Euler's constant and its 'alternating' analog $\displaystyle{ \log \frac{4}{\pi} }$.
17. Sondow, Jonathan; Zudilin, Wadim (2006). "Euler's constant, q-logarithms, and formulas of Ramanujan and Gosper". The Ramanujan Journal 12 (2). doi:10.1007/s11139-006-0075-1.
18. DeTemple, Duane W. (May 1993). "A Quicker Convergence to Euler's Constant". The American Mathematical Monthly 100 (5). doi:10.2307/2324300. ISSN 0002-9890.
19. Havil 2003, pp. 75–8.
20. Vacca, G. (1910). "A new analytical expression for the number π and some historical considerations". Bulletin of the American Mathematical Society 16.
21. Glaisher, James Whitbread Lee (1910). "On Dr. Vacca's series for γ". Q. J. Pure Appl. Math. 41.
22. Hardy, G.H. (1912). "Note on Dr. Vacca's series for γ". Q. J. Pure Appl. Math. 43.
23. Vacca, G. (1926). "Nuova serie per la costante di Eulero, C=0,577...". Rendiconti, Accademia Nazionale dei Lincei, Roma, Classe di Scienze Fisiche" (in it). Matematiche e Naturali 6 (3).
24. Kluyver, J.C. (1927). "On certain series of Mr. Hardy". Q. J. Pure Appl. Math. 50.
25. Blagouchine, Iaroslav V. (2016), "Expansions of generalized Euler's constants into the series of polynomials in π−2 and into the formal enveloping series with rational coefficients only", J. Number Theory 158, doi:10.1016/j.jnt.2015.06.012
26. Blagouchine, Iaroslav V. (2018), "Three notes on Ser's and Hasse's representations for the zeta-functions", INTEGERS: The Electronic Journal of Combinatorial Number Theory 18A (#A3), Bibcode2016arXiv160602044B
27. Alabdulmohsin, Ibrahim M. (2018). Summability Calculus. A Comprehensive Theory of Fractional Finite Sums. Springer. ISBN 9783319746487.
28. Weisstein, Eric W.. "Mertens Constant".
29. Sloane, N. J. A., ed. "Sequence A073004 (Decimal expansion of exp(gamma))". OEIS Foundation.
30. Sondow, Jonathan (2003). "An infinite product for eγ via hypergeometric formulas for Euler's constant, γ". arXiv:math.CA/0306008.
31. Choi, Junesang; Srivastava, H.M. (1 September 2010). "Integral Representations for the Euler–Mascheroni Constant γ". Integral Transforms and Special Functions 21 (9). doi:10.1080/10652461003593294. ISSN 1065-2469.
32. Havil 2003, pp. 117–8.
33. Knuth, Donald E. (July 1962). "Euler's Constant to 1271 Places". Mathematics of Computation (American Mathematical Society) 16 (79).
34. Yee, Alexander J. (7 March 2011). "Large Computations".
35. Yee, Alexander J.. "Records Set by y-cruncher".
Yee, Alexander J.. "y-cruncher - A Multi-Threaded Pi-Program".