Physics:Hyperpolarizability
The hyperpolarizability, a nonlinear-optical property of a molecule, is the second order electric susceptibility per unit volume.[1] The hyperpolarizability can be calculated using quantum chemical calculations developed in several software packages.[2][3][4] See nonlinear optics.
Definition and higher orders
The linear electric polarizability [math]\displaystyle{ \alpha }[/math] in isotropic media is defined as the ratio of the induced dipole moment [math]\displaystyle{ \mathbf{p} }[/math] of an atom to the electric field [math]\displaystyle{ \mathbf{E} }[/math] that produces this dipole moment.[5]
Therefore, the dipole moment is:
- [math]\displaystyle{ \mathbf{p}=\alpha \mathbf{E} }[/math]
In an isotropic medium [math]\displaystyle{ \mathbf{p} }[/math] is in the same direction as [math]\displaystyle{ \mathbf{E} }[/math], i.e. [math]\displaystyle{ \alpha }[/math] is a scalar. In an anisotropic medium [math]\displaystyle{ \mathbf{p} }[/math] and [math]\displaystyle{ \mathbf{E} }[/math] can be in different directions and the polarisability is now a tensor.
The total density of induced polarization is the product of the number density of molecules multiplied by the dipole moment of each molecule, i.e.:
- [math]\displaystyle{ \mathbf{P} = \rho \mathbf{p} = \rho \alpha \mathbf{E} = \varepsilon_0 \chi \mathbf{E}, }[/math]
where [math]\displaystyle{ \rho }[/math] is the concentration, [math]\displaystyle{ \varepsilon_0 }[/math] is the vacuum permittivity, and [math]\displaystyle{ \chi }[/math] is the electric susceptibility.
In a nonlinear optical medium, the polarization density is written as a series expansion in powers of the applied electric field, and the coefficients are termed the non-linear susceptibility:
- [math]\displaystyle{ \mathbf{P}(t) = \varepsilon_0 \left( \chi^{(1)} \mathbf{E}(t) + \chi^{(2)} \mathbf{E}^2(t) + \chi^{(3)} \mathbf{E}^3(t) + \ldots \right), }[/math]
where the coefficients χ(n) are the n-th-order susceptibilities of the medium, and the presence of such a term is generally referred to as an n-th-order nonlinearity. In isotropic media [math]\displaystyle{ \chi^{(n)} }[/math] is zero for even n, and is a scalar for odd n. In general, χ(n) is an (n + 1)-th-rank tensor. It is natural to perform the same expansion for the non-linear molecular dipole moment:
- [math]\displaystyle{ \mathbf{p}(t) = \alpha^{(1)} \mathbf{E}(t) + \alpha^{(2)} \mathbf{E}^2(t) + \alpha^{(3)} \mathbf{E}^3(t) + \ldots , }[/math]
i.e. the n-th-order susceptibility for an ensemble of molecules is simply related to the n-th-order hyperpolarizability for a single molecule by:
- [math]\displaystyle{ \alpha^{(n)}=\frac{\varepsilon_0}{\rho} \chi^{(n)} . }[/math]
With this definition [math]\displaystyle{ \alpha^{(1)} }[/math] is equal to [math]\displaystyle{ \alpha }[/math] defined above for the linear polarizability. Often [math]\displaystyle{ \alpha^{(2)} }[/math] is given the symbol [math]\displaystyle{ \beta }[/math] and [math]\displaystyle{ \alpha^{(3)} }[/math] is given the symbol [math]\displaystyle{ \gamma }[/math]. However, care is needed because some authors[6] take out the factor [math]\displaystyle{ \varepsilon_0 }[/math] from [math]\displaystyle{ \alpha^{(n)} }[/math], so that [math]\displaystyle{ \mathbf{p}=\varepsilon_0\sum_n\alpha^{(n)} \mathbf{E}^n }[/math] and hence [math]\displaystyle{ \alpha^{(n)}=\chi^{(n)}/\rho }[/math], which is convenient because then the (hyper-)polarizability may be accurately called the (nonlinear-)susceptibility per molecule, but at the same time inconvenient because of the inconsistency with the usual linear polarisability definition above.
See also
References
- ↑ "The Nonlinear Optics Home Page". http://www.nlosource.com/Polarizability.html.
- ↑ "GAMESS Input Documentation: TDHFX section". http://myweb.liu.edu/~nmatsuna/gamess/input/TDHFX.html.
- ↑ "Polar | Gaussian.com". https://gaussian.com/polar/.
- ↑ "The first calculation with DALTON". http://www.lct.jussieu.fr/pagesperso/reinh/labo/manuals/Dalton-2.0/HTMLmanual/node28.html.
- ↑ Introduction to Electrodynamics (3rd Edition), D.J. Griffiths, Pearson Education, Dorling Kindersley, 2007, ISBN:81-7758-293-3
- ↑ Boyd, Robert. Nonlinear Optics (3rd ed.). Elsevier. ISBN 978-81-312-2292-8.
External links
Original source: https://en.wikipedia.org/wiki/Hyperpolarizability.
Read more |