Physics:Arnold–Givental conjecture
The Arnold–Givental conjecture, named after Vladimir Arnold and Alexander Givental, is a statement on Lagrangian submanifolds. It gives a lower bound in terms of the Betti numbers of a Lagrangian submanifold L on the number of intersection points of L with another Lagrangian submanifold which is obtained from L by Hamiltonian isotopy, and which intersects L transversally.
Statement
Let [math]\displaystyle{ (M, \omega) }[/math] be a compact [math]\displaystyle{ 2n }[/math]-dimensional symplectic manifold. An anti-symplectic involution is a diffeomorphism [math]\displaystyle{ \tau: M \to M }[/math] such that [math]\displaystyle{ \tau^* \omega = -\omega }[/math]. The fixed point set [math]\displaystyle{ L \subset M }[/math] of [math]\displaystyle{ \tau }[/math] is necessarily a Lagrangian submanifold.
Let [math]\displaystyle{ H_t\in C^\infty(M), 0 \leq t \leq 1 }[/math] be a smooth family of Hamiltonian functions on [math]\displaystyle{ M }[/math] which generates a 1-parameter family of Hamiltonian diffeomorphisms [math]\displaystyle{ \varphi_t: M \to M }[/math]. The Arnold–Givental conjecture says, suppose [math]\displaystyle{ \varphi_1(L) }[/math] intersects transversely with [math]\displaystyle{ L }[/math], then
[math]\displaystyle{ \# (\varphi_1(L) \cap L) \geq \sum_{i=0}^n {\rm dim} H_*(L; {\mathbb Z}_2). }[/math]
Status
The Arnold–Givental conjecture has been proved for certain special cases.
Givental proved it for the case when [math]\displaystyle{ (M, L) = (\mathbb{CP}^n, \mathbb{RP}^n) }[/math].[1]
Yong-Geun Oh proved it for real forms of compact Hermitian spaces with suitable assumptions on the Maslov indices.[2]
Lazzarini proved it for negative monotone case under suitable assumptions on the minimal Maslov number.
Kenji Fukaya, Yong-Geun Oh, Ohta, and Ono proved for the case when [math]\displaystyle{ (M, \omega) }[/math] is semi-positive.[3]
Frauenfelder proved it for the situation when [math]\displaystyle{ (M, \omega) }[/math] is a certain symplectic reduction, using gauged Floer theory. [4]
See also
References
Citations
Bibliography
- Frauenfelder, Urs (2004), "The Arnold–Givental conjecture and moment Floer homology", International Mathematics Research Notices 2004 (42): 2179–2269, doi:10.1155/S1073792804133941.
- Fukaya, Kenji; Oh, Yong-Geun; Ohta, Hiroshi; Ono, Kaoru (2009), Lagrangian intersection Floer theory - anomaly and obstruction, International Press, ISBN 978-0-8218-5253-8
- Givental, A. B. (1989a), "Periodic maps in symplectic topology", Funktsional. Anal. I Prilozhen 23 (4): 37–52, https://www.mathnet.ru/eng/faa/v23/i4/p37
- Givental, A. B. (1989b), "Periodic maps in symplectic topology (translation from Funkts. Anal. Prilozh. 23, No. 4, 37-52 (1989))", Functional Analysis and Its Applications 23 (4): 287–300, doi:10.1007/BF01078943
- "Floer cohomology and Arnol'd-Givental's conjecture of [on Lagrangian intersections"], Comptes Rendus de l'Académie des Sciences 315 (3): 309–314, 1992, https://gallica.bnf.fr/ark:/12148/bpt6k5470708m/f315.item?lang=FR#.
- Oh, Yong-Geun (1995), "Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, III: Arnold-Givental Conjecture", The Floer Memorial Volume, pp. 555–573, doi:10.1007/978-3-0348-9217-9_23, ISBN 978-3-0348-9948-2
Original source: https://en.wikipedia.org/wiki/Arnold–Givental conjecture.
Read more |