Earth:Magma supply rate
The magma supply rate measures the production rate of magma at a volcano. Global magma production rates on Earth are about 20–25 cubic kilometres per year (4.8–6.0 cu mi/a).[1]
Definitions
Magma supply rate is also known as the Armstrong unit, where 1 Armstrong Unit = 1 cubic kilometre per year (32 m3/s).[2] Armstrong unit can also refer to volcanic flux rate per length of arc in discussions of volcanic arcs, in that case km2/year.[3]
Sometimes in discussion of large volcanic systems such as volcanic arcs the volcanic flux rate is normalized to a surface area, similar to Darcy's law in hydrodynamics. It is often easier to measure magma supply rates when they are normalized for an exposed surface area as it is often difficult to delimit an intrusion.[3]
Measurement difficulties
Estimating the volcanic flux rate or magma supply of a volcanic system is inherently difficult for a number of reasons, and different measurements can come to different conclusions about the volcanic flux rate of a given volcanic system. Not all volcanic bodies are equally well exposed, and it is often impossible or difficult to measure magma supply rates exactly. Furthermore, volcanic flux rates often vary over time, with distinct lulls and pulses. Wall rocks may be assimilated by magma or magma may undergo differentiation such as crystallization.[3] Magma contains vesicles and volcanic edifices are often eroded. The sizes of volcanic edifices and plutons are difficult to estimate, especially in intrusions which are mostly buried.[4]
Applications
The magma supply rate is used to infer the behaviour of volcanic systems which erupt periodically, as well as to describe the growth of the continental crust and of deep-seated magmatic bodies such as plutons.[3] Magma output is usually larger in oceanic settings than in continental ones, and basaltic volcanic systems produce more magma than silicic ones.[4]
Table of selected flux rates
Name | Rate | Timespan | Method | Reference |
---|---|---|---|---|
Aegina volcanic field | 0.0004 cubic kilometres per millennium (9.6×10−5 cu mi/ka) | [5] | ||
Altiplano-Puna volcanic complex | 1 cubic kilometre per millennium (0.24 cu mi/ka) extrusive, 3–5 cubic kilometres per millennium (0.72–1.20 cu mi/ka) intrusive | 10 mya | Total volume/Duration | [6] |
Altiplano-Puna volcanic complex, first pulse | 1.5 cubic kilometres per millennium (0.36 cu mi/ka) extrusive, 4.5–8 cubic kilometres per millennium (1.1–1.9 cu mi/ka) intrusive | 200 ka | Total volume/Duration | [6] |
Altiplano-Puna volcanic complex, second pulse | 4.5 cubic kilometres per millennium (1.1 cu mi/ka) extrusive, 13.5–22.5 cubic kilometres per millennium (3.2–5.4 cu mi/ka) intrusive | 600 ka | Total volume/Duration | [6] |
Altiplano-Puna volcanic complex, third pulse | 4 cubic kilometres per millennium (0.96 cu mi/ka) extrusive, 12–20 cubic kilometres per millennium (2.9–4.8 cu mi/ka) intrusive | 600 ka | Total volume/Duration | [6] |
Altiplano-Puna volcanic complex, fourth pulse | 12 cubic kilometres per millennium (2.9 cu mi/ka) extrusive, 36–60 cubic kilometres per millennium (8.6–14.4 cu mi/ka) intrusive | 350 ka | Total volume/Duration | [6] |
Altiplano-Puna volcanic complex, after 4th pulse | 0.2 cubic kilometres per millennium (0.048 cu mi/ka) extrusive, 0.6–1 cubic kilometre per millennium (0.14–0.24 cu mi/ka) intrusive | 2400 ka | Total volume/Duration | [6] |
Arenal | 2.7 cubic kilometres per millennium (0.65 cu mi/ka) | 7,000 years | Total volume/Duration | [7] |
Aucanquilcha, Angulo | 0.015 cubic kilometres per millennium (0.0036 cu mi/ka) | 600-200 ka | Total volume/Duration | [8] |
Aucanquilcha, Azufrera | 0.16 cubic kilometres per millennium (0.038 cu mi/ka) | 1040–920 ka | Total volume/Duration | [8] |
Aucanquilcha, Cumbre Negra | 0.005 cubic kilometres per millennium (0.0012 cu mi/ka) | Over 150 ka | Total volume/Duration | [8] |
Aucanquilcha, Rodado | 0.09 cubic kilometres per millennium (0.022 cu mi/ka) | 950–850 ka | Total volume/Duration | [8] |
Aucanquilcha, edifice building phases | 0.16 cubic kilometres per millennium (0.038 cu mi/ka) | Over 200 ka | Total volume/Duration | |
Aucanquilcha, later phases | 0.02 cubic kilometres per millennium (0.0048 cu mi/ka) | 800 ka | Total volume/Duration | [8] |
Broken Ridge | 1,000–2,000 cubic kilometres per millennium (240–480 cu mi/ka) | Between 88 and 89 million years ago | Total volume/Duration | [9] |
Camargo volcanic field | 0.026 cubic kilometres per millennium (0.0062 cu mi/ka) | Total volume/Duration | [10] | |
Caribbean large igneous province | 2,000 cubic kilometres per millennium (480 cu mi/ka) | Between 89 and 91 million years ago | Total volume/Duration | [9] |
Cascades | 300 cubic kilometres per millennium (72 cu mi/ka) | A single pluton plumbing system | Volume/Duration | [3] |
Central Volcanic Zone | 0.11 cubic kilometres per millennium (0.026 cu mi/ka) | Last 28 million years | [8] | |
Cerro Toledo, Jemez Caldera, intrusion | 35 cubic kilometres per millennium (8.4 cu mi/ka) | Over 0.33 million years | Magma supplied/duration | [11] |
Chimborazo | 0.5–0.7 cubic kilometres per millennium (0.12–0.17 cu mi/ka) | A single pluton plumbing system | Volume/Duration | [12] |
Chimborazo, Basal Edifice | 1–0.7 cubic kilometres per millennium (0.24–0.17 cu mi/ka) | 120-60 ka | Volume/Duration | [12] |
Chimborazo, Intermediary Edifice | 0.4–0.7 cubic kilometres per millennium (0.096–0.168 cu mi/ka) | 60–35 ka | Volume/Duration | [12] |
Chimborazo, Young Cone | 0.1 cubic kilometres per millennium (0.024 cu mi/ka) | 33–14 ka | Volume/Duration | [12] |
Cook Islands-Austral Islands | 11 cubic kilometres per millennium (2.6 cu mi/ka) | 25 million years | Total volume of edifices/age, neglecting subsidence and eroded material | [13] |
El Chichon | 0.5 cubic kilometres per millennium (0.12 cu mi/ka) | Past 8,000 years | Volume/Duration | [14] |
El Hierro | >0.4 cubic kilometres per millennium (0.096 cu mi/ka) | Juvenile stage | Total volume including sector collapses/Duration | [15][16] |
El Misti | 0.63 cubic kilometres per millennium (0.15 cu mi/ka) | Last 350 ka | Total volume/Duration | [15] |
Emperor Seamounts | 10 cubic kilometres per millennium (2.4 cu mi/ka) | 80 to 45 million years ago | Volume/Duration | [17] |
Farallon Negro | 0.31 cubic kilometres per millennium (0.074 cu mi/ka) | Interpolated volume/Duration | [18] | |
Hawaii | 210 cubic kilometres per millennium (50 cu mi/ka) | Volume including subsidence/Duration | [17] | |
Hawaiian Islands | 95 cubic kilometres per millennium (23 cu mi/ka) | 6 to 0 million years ago | Volume/Duration | [17] |
Hawaiian Ridge | 17 cubic kilometres per millennium (4.1 cu mi/ka) | 45 to 0 million years ago | Volume/Duration | [17] |
Imbabura | 0.13 cubic kilometres per millennium (0.031 cu mi/ka) | Past 35,000 years | Minimum total volume/Duration | [19] |
Klyuchevskaya Sopka | 40 cubic kilometres per millennium (9.6 cu mi/ka) | Last 6800 years | Total volume/Duration | [20] |
Lesser Antilles Volcanic Arc | 3 cubic kilometres per millennium (0.72 cu mi/ka) | Last 100 ka | Total volume/Duration | [21] |
Marquesas Islands | 21 cubic kilometres per millennium (5.0 cu mi/ka) | 7 million years | Total volume of edifices/age, neglecting subsidence and eroded material | [13] |
Meidob volcanic field, whole edifice | 0.2 cubic kilometres per millennium (0.048 cu mi/ka) | Between 7 and 0.3 million years ago | Total volume/Duration | [22] |
Menengai | 0.52 cubic kilometres per millennium (0.12 cu mi/ka) | [23] | ||
Methana | 0.001 cubic kilometres per millennium (0.00024 cu mi/ka) | [5] | ||
Morne Jacob, whole edifice | 0.040 ± 0.008 cubic kilometres per millennium (0.0096 ± 0.0019 cu mi/ka) | During, 3.7 ± 0.03 Myr | Total volume/Duration | [21] |
Morne Jacob, J1T | 0.107 cubic kilometres per millennium (0.026 cu mi/ka) | 5.14 ± 0.07 and 4.10 ± 0.06 Ma | Total volume (assuming basis at sea level)/Duration | |
Morne Jacob, J2T | 0.02 cubic kilometres per millennium (0.0048 cu mi/ka) | Between 3.2 and 1.5 Ma | Total volume (subtracting J1T)/Duration | [21] |
Mount Adams volcanic field | 0.1 cubic kilometres per millennium (0.024 cu mi/ka) | Postglacial | [24] | |
Mount Etna | 1.6 ± 0.4 cubic kilometres per millennium (0.384 ± 0.096 cu mi/ka) | 330,000 years | Estimated volume/timespan | [25] |
Mount Etna, Timpe phase | 0.84 cubic kilometres per millennium (0.20 cu mi/ka) | 110,000 years | Estimated volume/timespan | [25] |
Mount Etna, Valle del Bove phase | 2.9 cubic kilometres per millennium (0.70 cu mi/ka) | 50,000 years | Estimated volume/timespan | [25] |
Mount Etna, Stratovolcano phase | 4.8 cubic kilometres per millennium (1.2 cu mi/ka) | 60,000 years | Estimated volume/timespan | [25] |
Mount Etna | 700 cubic kilometres per millennium (170 cu mi/ka) | Based on the carbon dioxide output | [26] | |
Mount Pelee, Mont Conil Ia | 0.04 cubic kilometres per millennium (0.0096 cu mi/ka)±0.01 | 543±8-189±3 ka | Edifice volume/Duration | [21] |
Mount Pelee, Mont Conil Ib | 0.36 cubic kilometres per millennium (0.086 cu mi/ka)±0.09 | Edifice volume/Duration | [21] | |
Mount Pelee, Paleo-Pelee | 0.26 cubic kilometres per millennium (0.062 cu mi/ka)±0.08 | 126±2–25 ka | Edifice volume/Duration | [21] |
Mount Pelee, Saint Vincent stage | 0.52 cubic kilometres per millennium (0.12 cu mi/ka)±0.20 | 25–9 ka | Edifice volume/Duration | [21] |
Mount Pelee, longterm | 0.13 cubic kilometres per millennium (0.031 cu mi/ka) | Edifice volume/Duration | [21] | |
Mount Pelee | 0.75 cubic kilometres per millennium (0.18 cu mi/ka) | Past 13,500 BP | Average eruption volume*Eruptions per lifespan | [21] |
Mount Sidley | 0.2 cubic kilometres per millennium (0.048 cu mi/ka) | [27] | ||
Nevado Tres Cruces | 0.13 cubic kilometres per millennium (0.031 cu mi/ka) | 1.5-0.03 mya | Volume/Duration | |
Parinacota | 0.032 cubic kilometres per millennium (0.0077 cu mi/ka) | Since Late Pleistocene. | Volume/Duration | [28] |
Parinacota | 2.25 cubic kilometres per millennium (0.54 cu mi/ka) | Last 8,000 years. | Volume/Duration | [28] |
Parinacota, Young Cone prior to 8.1 ka | 10 cubic kilometres per millennium (2.4 cu mi/ka) | 1000–2000 years long. | [29] | |
Ruapehu | 0.6 cubic kilometres per millennium (0.14 cu mi/ka) | 250,000 years | Total volume/Lifespan | [30] |
Ruapehu, Mangawhero formation | 0.88 cubic kilometres per millennium (0.21 cu mi/ka) | [30] | ||
Ruapehu, Te Herenga formation | 0.93 cubic kilometres per millennium (0.22 cu mi/ka) | [30] | ||
Ruapehu, Waihianoa formation | 0.9 cubic kilometres per millennium (0.22 cu mi/ka) | [30] | ||
Ruapehu, Whakapapa formation | 0.17 cubic kilometres per millennium (0.041 cu mi/ka) | [30] | ||
Samoa | 33 cubic kilometres per millennium (7.9 cu mi/ka) | 3 million years | Total volume of edifices/age, neglecting subsidence and eroded material | [13] |
San Francisco Mountain | 0.2 cubic kilometres per millennium (0.048 cu mi/ka) | ≤ 400 ka | Total volume/Duration, including landslide removals | [31] |
San Francisco Mountain, main shield building stage | 0.3 cubic kilometres per millennium (0.072 cu mi/ka) | ~ 100 ka | Total volume/Duration, including landslide removals | [31] |
San Pedro de Tatara | 0.33–0.19 cubic kilometres per millennium (0.079–0.046 cu mi/ka) | Total volume/Duration, including glacially eroded volumes | [32] | |
Santa Maria | 0.12 cubic kilometres per millennium (0.029 cu mi/ka) | 103-35 ka | [33] | |
Santa Maria | 0.16 cubic kilometres per millennium (0.038 cu mi/ka) | 103 ka – 1902 | [33] | |
Sierra Nevada | 9.7 cubic kilometres per millennium (2.3 cu mi/ka) | A single pluton plumbing system | Volume of plutons/emplacement time | [3] |
Society Islands | 36 cubic kilometres per millennium (8.6 cu mi/ka) | 5 million years | Total volume of edifices/age, neglecting subsidence and eroded material | [13] |
Soufrière Hills | 0.17 cubic kilometres per millennium (0.041 cu mi/ka) | Last 174 ka | Total volume/Duration | [21] |
Stromboli | 10–20 cubic kilometres per millennium (2.4–4.8 cu mi/ka) | Magma intrusion needed to create the measured sulfur dioxide emissions. | [34] | |
Tancítaro | ≤0.19 cubic kilometres per millennium (0.046 cu mi/ka) | ≥ 550 ka | Total volume/Duration | |
Tenerife | 0.3 cubic kilometres per millennium (0.072 cu mi/ka) | Long term average | Total volume/Duration | [35] |
Tenerife, Old Basaltic Series | 0.25–0.5 cubic kilometres per millennium (0.060–0.120 cu mi/ka) | 8-4 million years ago | Estimated volume/Duration | [35] |
Tenerife, Cañadas I volcano | 0.4 cubic kilometres per millennium (0.096 cu mi/ka) | 1 million years | Estimated volume/Duration | [35] |
Tenerife, Cañadas II volcano | 0.2–0.25 cubic kilometres per millennium (0.048–0.060 cu mi/ka) | 0.8 million years | Estimated volume/Duration | [35] |
Tenerife, Cordillera Dorsal | 1.5–1.25 cubic kilometres per millennium (0.36–0.30 cu mi/ka) | 0.2 million years | Estimated volume/Duration | [35] |
Tenerife, Teide-Pico Viejo | 0.75 cubic kilometres per millennium (0.18 cu mi/ka) | 0.2 million years | Estimated volume/Duration | [35] |
Tunupa-Huayrana | 0.43–0.93 cubic kilometres per millennium (0.10–0.22 cu mi/ka) | 240,000–90,000 years | [36] | |
Ubinas | 0.17–0.22 cubic kilometres per millennium (0.041–0.053 cu mi/ka) | < 376 ka | Cone volume/Duration | [37][38] |
Yellowstone | 2 cubic kilometres per millennium (0.48 cu mi/ka) | Long term average | [39] |
References
- ↑ Janle, P.; Basilevsky, A.T.; Kreslavsky, M.A.; Slyuta, E.N. (1 July 1992). "Heat loss and tectonic style of Venus" (in English). Earth, Moon, and Planets 58 (1): 1–29. doi:10.1007/BF00058070. ISSN 0167-9295. Bibcode: 1992EM&P...58....1J.
- ↑ Scholl, David W.; Huene, Roland von (January 2007) (in en). Crustal recycling at modern subduction zones applied to the past—Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geological Society of America Memoirs. 200. 9–32. doi:10.1130/2007.1200(02). ISBN 978-0-8137-1200-0.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 Paterson, Scott R.; Okaya, David; Memeti, Valbone; Economos, Rita; Miller, Robert B. (2011-12-01). "Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: Combined field, geochronologic, and thermal modeling studies" (in en). Geosphere 7 (6): 1439–1468. doi:10.1130/GES00696.1. Bibcode: 2011Geosp...7.1439P.
- ↑ 4.0 4.1 Crisp, Joy A. (April 1984). "Rates of magma emplacement and volcanic output". Journal of Volcanology and Geothermal Research 20 (3–4): 177–211. doi:10.1016/0377-0273(84)90039-8. ISSN 0377-0273. Bibcode: 1984JVGR...20..177C.
- ↑ 5.0 5.1 D'Alessandro, W.; Brusca, L.; Kyriakopoulos, K.; Michas, G.; Papadakis, G. (December 2008). "Methana, the westernmost active volcanic system of the south Aegean arc (Greece): Insight from fluids geochemistry". Journal of Volcanology and Geothermal Research 178 (4): 820. doi:10.1016/j.jvolgeores.2008.09.014. ISSN 0377-0273. Bibcode: 2008JVGR..178..818D.
- ↑ 6.0 6.1 6.2 6.3 6.4 6.5 de Silva, Shanaka L.; Gosnold, William D. (November 2007). "Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up". Journal of Volcanology and Geothermal Research 167 (1–4): 320–335. doi:10.1016/j.jvolgeores.2007.07.015. Bibcode: 2007JVGR..167..320D.
- ↑ Soto, Gerardo J.; Alvarado, Guillermo E. (September 2006). "Eruptive history of Arenal Volcano, Costa Rica, 7 ka to present". Journal of Volcanology and Geothermal Research 157 (1–3): 254–269. doi:10.1016/j.jvolgeores.2006.03.041. ISSN 0377-0273. Bibcode: 2006JVGR..157..254S.
- ↑ 8.0 8.1 8.2 8.3 8.4 8.5 Cite error: Invalid
<ref>
tag; no text was provided for refs namedGrunderKlemetti2007
- ↑ 9.0 9.1 Kerr, Andrew C. (1 August 1998). "Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary?" (in en). Journal of the Geological Society 155 (4): 619–626. doi:10.1144/gsjgs.155.4.0619. ISSN 0016-7649. Bibcode: 1998JGSoc.155..619K. http://jgs.lyellcollection.org/content/155/4/619.short.
- ↑ Royo-Ochoa, M.; Alva-Valdivia, L. M.; Fucugauchi, J. Urrutia; Chavez-Aguirre, R.; Goguitchaichvili, A.; Solé, J.; Rivas, M. L. (1 June 2004). "Magnetic Polarity Stratigraphy and K-Ar Dating in the Camargo Volcanic Field, Northern Mexico: Lateral SW-NE Migration of Volcanic Activity". International Geology Review 46 (6): 558–573. doi:10.2747/0020-6814.46.6.558. ISSN 0020-6814. Bibcode: 2004IGRv...46..558R.
- ↑ Stix, John; Gorton, Michael P. (October 1990). "Variations in trace element partition coefficients in sanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico: Effects of composition, temperature, and volatiles". Geochimica et Cosmochimica Acta 54 (10): 2697–2708. doi:10.1016/0016-7037(90)90005-6. ISSN 0016-7037. Bibcode: 1990GeCoA..54.2697S.
- ↑ 12.0 12.1 12.2 12.3 Samaniego, Pablo; Barba, Diego; Robin, Claude; Fornari, Michel; Bernard, Benjamin (April 2012). "Eruptive history of Chimborazo volcano (Ecuador): A large, ice-capped and hazardous compound volcano in the Northern Andes". Journal of Volcanology and Geothermal Research 221–222: 33–51. doi:10.1016/j.jvolgeores.2012.01.014. ISSN 0377-0273. Bibcode: 2012JVGR..221...33S.
- ↑ 13.0 13.1 13.2 13.3 Staudigel, Hubert; Park, K.-H.; Pringle, M.; Rubenstone, J.L.; Smith, W.H.F.; Zindler, A. (January 1991). "The longevity of the South Pacific isotopic and thermal anomaly". Earth and Planetary Science Letters 102 (1): 24–44. doi:10.1016/0012-821X(91)90015-A. ISSN 0012-821X. Bibcode: 1991E&PSL.102...24S.
- ↑ Layer, P. W.; García-Palomo, A.; Jones, D.; Macías, J. L.; Arce, J. L.; Mora, J. C. (March 2009). "El Chichón volcanic complex, Chiapas, México: Stages of evolution based on field mapping and 40Ar/39Ar geochronology". Geofísica Internacional 48 (1): 33–54. doi:10.22201/igeof.00167169p.2009.48.1.98. ISSN 0016-7169. http://www.scielo.org.mx/scielo.php?pid=S0016-71692009000100004&script=sci_arttext&tlng=pt.
- ↑ 15.0 15.1 Harpel, Christopher J.; de Silva, Shanaka; Salas, Guido (26 May 2011). "The 2 ka Eruption of Misti Volcano, Southern Peru—The Most Recent Plinian Eruption of Arequipa's Iconic Volcano". GSA Special Papers 484: 5. http://specialpapers.gsapubs.org/content/484/1.short. Retrieved 26 November 2015.
- ↑ Carracedo, J. C.; Day, S.; Guillou, H.; Badiola, E. Rodríguez; Canas, J. A.; Torrado, F. J. Pérez (1998). "Hotspot volcanism close to a passive continental margin: the Canary Islands". Geological Magazine 135 (5): 591–604. doi:10.1017/s0016756898001447. ISSN 1469-5081. Bibcode: 1998GeoM..135..591C.
- ↑ 17.0 17.1 17.2 17.3 Robinson, Joel E.; Eakins, Barry W. (March 2006). "Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge". Journal of Volcanology and Geothermal Research 151 (1–3): 309–317. doi:10.1016/j.jvolgeores.2005.07.033. ISSN 0377-0273. Bibcode: 2006JVGR..151..309R.
- ↑ Halter, Werner E; Bain, Nicolas; Becker, Katja; Heinrich, Christoph A; Landtwing, Marianne; VonQuadt, Albrecht; Clark, Alan H; Sasso, Anne M et al. (August 2004). "From andesitic volcanism to the formation of a porphyry Cu-Au mineralizing magma chamber: the Farallón Negro Volcanic Complex, northwestern Argentina". Journal of Volcanology and Geothermal Research 136 (1–2): 1–30. doi:10.1016/j.jvolgeores.2004.03.007. Bibcode: 2004JVGR..136....1H.
- ↑ Le Pennec, J.L.; Ruiz, A.G.; Eissen, J.P.; Hall, M.L.; Fornari, M. (September 2011). "Identifying potentially active volcanoes in the Andes: Radiometric evidence for late Pleistocene-early Holocene eruptions at Volcán Imbabura, Ecuador". Journal of Volcanology and Geothermal Research 206 (3–4): 121–135. doi:10.1016/j.jvolgeores.2011.06.002. ISSN 0377-0273. Bibcode: 2011JVGR..206..121L.
- ↑ Auer, Sara; Bindeman, Ilya; Wallace, Paul; Ponomareva, Vera; Portnyagin, Maxim (6 August 2008). "The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia". Contributions to Mineralogy and Petrology 157 (2): 209–230. doi:10.1007/s00410-008-0330-0.
- ↑ 21.0 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 Germa, Aurelie; Lahitte, Pierre; Quidelleur, Xavier (July 2015). "Construction and destruction of Mont Pelée volcano: Volumes and rates constrained from a geomorphological model of evolution". Journal of Geophysical Research: Earth Surface 120 (7): 1206–1226. doi:10.1002/2014JF003355. Bibcode: 2015JGRF..120.1206G. https://scholarcommons.usf.edu/geo_facpub/1293.
- ↑ Franz, Gerhard; Breitkreuz, Christoph; Coyle, David A.; El Hur, Bushra; Heinrich, Wilhelm; Paulick, Holger; Pudlo, Dieter; Smith, Robyn et al. (August 1997). "The alkaline Meidob volcanic field (Late Cenozoic, northwest Sudan)". Journal of African Earth Sciences 25 (2): 263–291. doi:10.1016/S0899-5362(97)00103-6. ISSN 1464-343X. Bibcode: 1997JAfES..25..263F.
- ↑ Leat, P. T. (1 November 1984). "Geological evolution of the trachytic caldera volcano Menengai, Kenya Rift Valley" (in en). Journal of the Geological Society 141 (6): 1057–1069. doi:10.1144/gsjgs.141.6.1057. ISSN 0016-7649. Bibcode: 1984JGSoc.141.1057L. http://jgs.lyellcollection.org/content/141/6/1057.short.
- ↑ Hildreth, Wes; Fierstein, Judy (1 April 1997). "Recent eruptions of Mount Adams, Washington Cascades, USA" (in en). Bulletin of Volcanology 58 (6): 472–490. doi:10.1007/s004450050156. ISSN 0258-8900. Bibcode: 1997BVol...58..472H.
- ↑ 25.0 25.1 25.2 25.3 Branca, Stefano; Ferrara, Vincenzo (February 2013). "The morphostructural setting of Mount Etna sedimentary basement (Italy): Implications for the geometry and volume of the volcano and its flank instability". Tectonophysics 586: 46–64. doi:10.1016/j.tecto.2012.11.011. ISSN 0040-1951. Bibcode: 2013Tectp.586...46B.
- ↑ D'Alessandro, W.; Giammanco, S.; Parello, F.; Valenza, M. (1 April 1997). "CO2 output and δ13C(CO2) from Mount Etna as indicators of degassing of shallow asthenosphere" (in en). Bulletin of Volcanology 58 (6): 455–458. doi:10.1007/s004450050154. ISSN 0258-8900. Bibcode: 1997BVol...58..455D.
- ↑ Panter, K.S.; McIntosh, W.C.; Smellie, J.L. (1 November 1994). "Volcanic history of Mount Sidley, a major alkaline volcano in Marie Byrd Land, Antarctica" (in English). Bulletin of Volcanology 56 (5): 361–376. doi:10.1007/BF00326462. ISSN 0258-8900. Bibcode: 1994BVol...56..361P.
- ↑ 28.0 28.1 Clavero R., Jorge E.; Sparks, Stephen J.; Polanco, Edmundo; Pringle, Malcolm S. (December 2004). "Evolution of Parinacota volcano, Central Andes, Northern Chile". Revista Geológica de Chile 31 (2). doi:10.4067/S0716-02082004000200009.
- ↑ Jicha, Brian R.; Laabs, Benjamin J.C.; Hora, John M.; Singer, Brad S.; Caffee, Marc W. (November 2015). "Early Holocene collapse of Volcán Parinacota, central Andes, Chile: Volcanological and paleohydrological consequences". Geological Society of America Bulletin 127 (11–12): 1681–1688. doi:10.1130/B31247.1. Bibcode: 2015GSAB..127.1681J.
- ↑ 30.0 30.1 30.2 30.3 30.4 Gamble, John A.; Price, Richard C.; Smith, Ian E.M.; McIntosh, William C.; Dunbar, Nelia W. (February 2003). "40Ar/39Ar geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand". Journal of Volcanology and Geothermal Research 120 (3–4): 271–287. doi:10.1016/S0377-0273(02)00407-9. ISSN 0377-0273. Bibcode: 2003JVGR..120..271G.
- ↑ 31.0 31.1 Karátson, Dávid; Telbisz, Tamás; Singer, Brad S. (1 May 2010). "Late-stage volcano geomorphic evolution of the Pleistocene San Francisco Mountain, Arizona (USA), based on high-resolution DEM analysis and 40Ar/39Ar chronology". Bulletin of Volcanology 72 (7): 833–846. doi:10.1007/s00445-010-0365-8. Bibcode: 2010BVol...72..833K.
- ↑ Singer, B. S.; Thompson, R. A.; Dungan, M. A.; Feeley, T. C.; Nelson, S. T.; Pickens, J. C.; Brown, L. L.; Wulff, A. W. et al. (February 1997). "Volcanism and erosion during the past 930 k.y. at the Tatara–San Pedro complex, Chilean Andes". Geological Society of America Bulletin 109 (2): 127–142. doi:10.1130/0016-7606(1997)109<0127:VAEDTP>2.3.CO;2. Bibcode: 1997GSAB..109..127S.
- ↑ 33.0 33.1 Escobar-Wolf, R. P.; Diehl, J. F.; Singer, B. S.; Rose, W. I. (30 December 2009). "40Ar/39Ar and paleomagnetic constraints on the evolution of Volcan de Santa Maria, Guatemala". Geological Society of America Bulletin 122 (5–6): 757–771. doi:10.1130/B26569.1.
- ↑ Allard, P.; Carbonnelle, J.; Métrich, N.; Loyer, H.; Zettwoog, P. (1994). "Sulphur output and magma degassing budget of Stromboli volcano" (in En). Nature 368 (6469): 326–330. doi:10.1038/368326a0. ISSN 1476-4687. Bibcode: 1994Natur.368..326A.
- ↑ 35.0 35.1 35.2 35.3 35.4 35.5 Ancochea, Eumenio; Fuster, JoséMaría; Ibarrola, Elisa; Cendrero, Antonio; Coello, Juan; Hernan, Francisco; Cantagrel, Jean M.; Jamond, Colette (December 1990). "Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data". Journal of Volcanology and Geothermal Research 44 (3–4): 231–249. doi:10.1016/0377-0273(90)90019-C. ISSN 0377-0273. Bibcode: 1990JVGR...44..231A. http://eprints.ucm.es/43129/1/1992%20Lanzarote%20Coello.pdf.
- ↑ J., Salisbury, Morgan. "Convergent margin magmatism in the central Andes and its near antipodes in western Indonesia : spatiotemporal and geochemical considerations" (in en-US). Oregon State University. http://ir.library.oregonstate.edu/xmlui/handle/1957/21829.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedgsapubs274
- ↑ Thouret, Jean-Claude; Rivera, Marco; Wörner, Gerhard; Gerbe, Marie-Christine; Finizola, Anthony; Fornari, Michel; Gonzales, Katherine (21 April 2005). "Ubinas: the evolution of the historically most active volcano in southern Peru". Bulletin of Volcanology 67 (6): 557–589. doi:10.1007/s00445-004-0396-0. Bibcode: 2005BVol...67..557T. https://hal.archives-ouvertes.fr/hal-00407467/file/2005-%288%29-Ubinas-Bull-Volcanol_hal.pdf.
- ↑ Rivera, Tiffany A.; Schmitz, Mark D.; Jicha, Brian R.; Crowley, James L. (1 September 2016). "Zircon Petrochronology and40Ar/39Ar Sanidine Dates for the Mesa Falls Tuff: Crystal-scale Records of Magmatic Evolution and the Short Lifespan of a Large Yellowstone Magma Chamber" (in en). Journal of Petrology 57 (9): egw053. doi:10.1093/petrology/egw053. ISSN 0022-3530.
Original source: https://en.wikipedia.org/wiki/Magma supply rate.
Read more |