Chemistry:Cononsolvency

From HandWiki
Revision as of 20:04, 5 February 2024 by Wikisleeper (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Schematic representation of the cononsolvency effect of a polymer in mixed solution.

Cononsolvency is a phenomenon where two solvents that can typically readily dissolve a polymer, when mixed, at certain ratios of these two solvents, are no longer able to dissolve the polymer. This phenomenon is in contrast to cosolvency where two solvents that are both poor at dissolving a material, but when the two poor solvents admixed, can form a mixed solvent capable of dissolving the material.

The first works of both experimental and theoretical about the cononsolvency effect were published in the late 1970s.[1][2] Since then, numerous studies focused on a manifold of different polymers that featured the cononsolvency effect in water and various organic cosolvents such as methanol, ethanol, and acetone.[3][4][5] Typically poly(acrylamide)s such as poly(N-isopropylacrylamide) show the cononsolvency effect,[6][7][8] while this effect is also known for other homopolymers and for more complex systems e.g., diblock copolymer, polyelectrolytes,[9][10] crosslinked microgels,[11][12] micelles,[13] and grafted polymer brushes.[10] [14] Recently, it was also shown that thermo-responsive thin films exhibit the cononsolvency effect in a mixed solvent vapor phase,[15][16][17][18] which can be explained by a decreased volume phase transition temperature, the thin-film analogy of a lower critical solution temperature. These experimental studies are supported by a growing number of simulation studies.[19][20][21][22]

After 45 years of research, the origin of the molecular mechanism behind the cononsolvency effect in a mixture of solvents remains not fully resolved yet. To date, researchers have considered various interactions between polymer and solvent/cosolvent as possible factors leading to the cononsolvency effect, such as competitive hydrogen bonding of the solvent and cosolvent with the polymer,[20][23][24] hydrophobic hydration of particular functional groups of the polymer,[25] cosolvent induced geometric frustration,[26][27] excluded-volume interactions due to the surfactant-like behavior of amphiphilic cosolvents,[28][29] as well as the three body effects, i.e., temporary bridging of one or more individual polymer chains by the cosolvent.[30][31][32][33]

In literature, cononsolvency was reported almost exclusively for polymers in aqueous solution. This, however, does not mean that cononsolvency cannot happen in non-aqueous solutions. For example, poly(methyl methacrylate) shows the cononsolvency effect in the binary mixtures of two organic solvents (chlorobutane and amyl acetate[34]).

References

  1. Wolf, B. A.; Willms, M. M. (September 1978). "Measured and calculated solubility of polymers in mixed solvents: Co-nonsolvency". Die Makromolekulare Chemie 179 (9): 2265–2277. doi:10.1002/macp.1978.021790914. ISSN 0025-116X. http://dx.doi.org/10.1002/macp.1978.021790914. 
  2. De Gennes, P.G. (1976). "Conformation of a polymer chain in certain mixed solvents". Journal de Physique Lettres 37 (4): 59–61. doi:10.1051/jphyslet:0197600370405900. ISSN 0302-072X. http://www.edpsciences.org/10.1051/jphyslet:0197600370405900. 
  3. Winnik, Francoise M.; Ringsdorf, H.; Venzmer, J. (1990-04-01). "Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylamide)". Macromolecules 23 (8): 2415–2416. doi:10.1021/ma00210a048. ISSN 0024-9297. Bibcode1990MaMol..23.2415W. https://doi.org/10.1021/ma00210a048. 
  4. Crowther, H. M.; Vincent, B. (1998-01-23). "Swelling behavior of poly- N -isopropylacrylamide microgel particles in alcoholic solutions". Colloid & Polymer Science 276 (1): 46–51. doi:10.1007/s003960050207. ISSN 0303-402X. http://link.springer.com/10.1007/s003960050207. 
  5. Costa, Ricardo O. R; Freitas, Roberto F. S (2002-01-01). "Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions" (in en). Polymer 43 (22): 5879–5885. doi:10.1016/S0032-3861(02)00507-4. ISSN 0032-3861. https://www.sciencedirect.com/science/article/pii/S0032386102005074. 
  6. Yamauchi, Hideo; Maeda, Yasushi (2007-11-01). "LCST and UCST Behavior of Poly(N-isopropylacrylamide) in DMSO/Water Mixed Solvents Studied by IR and Micro-Raman Spectroscopy". The Journal of Physical Chemistry B 111 (45): 12964–12968. doi:10.1021/jp072438s. ISSN 1520-6106. PMID 17949072. https://doi.org/10.1021/jp072438s. 
  7. Zhu, Peng Wei; Napper, Donald H. (1996-06-21). "Volume phase transitions of poly(N-isopropylacrylamide) latex particles in mixed water-N,N-dimethylformamide solutions" (in en). Chemical Physics Letters 256 (1): 51–56. doi:10.1016/0009-2614(96)00420-4. ISSN 0009-2614. Bibcode1996CPL...256...51Z. https://dx.doi.org/10.1016/0009-2614%2896%2900420-4. 
  8. Dalkas, Georgios; Pagonis, Konstantinos; Bokias, Georgios (2006-01-03). "Control of the lower critical solution temperature—type cononsolvency properties of poly(N-isopropylacrylamide) in water—dioxane mixtures through copolymerisation with acrylamide" (in en). Polymer 47 (1): 243–248. doi:10.1016/j.polymer.2005.10.115. ISSN 0032-3861. https://www.sciencedirect.com/science/article/pii/S0032386105015867. 
  9. Chen, Zhiyun; Yu, Sihan; Liu, Doudou; Shi, Shaoxiong; Shen, Weiguo (2018-09-01). "Solvation Behaviors of Poly(acrylic acid) in Mixed Solvents of 2-Butoxyethanol + Water" (in en). Journal of Solution Chemistry 47 (9): 1539–1552. doi:10.1007/s10953-018-0809-x. ISSN 1572-8927. https://doi.org/10.1007/s10953-018-0809-x. 
  10. 10.0 10.1 Edmondson, Steve; Nguyen, Nam T.; Lewis, Andrew L.; Armes, Steven P. (2010-05-18). "Co-Nonsolvency Effects for Surface-Initiated Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Brushes in Alcohol/Water Mixtures". Langmuir 26 (10): 7216–7226. doi:10.1021/la904346j. ISSN 0743-7463. PMID 20380474. https://doi.org/10.1021/la904346j. 
  11. Kojima, Hiroyuki; Tanaka, Fumihiko; Scherzinger, Christine; Richtering, Walter (2012-10-19). "Temperature dependent phase behavior of PNIPAM microgels in mixed water/methanol solvents". Journal of Polymer Science Part B: Polymer Physics 51 (14): 1100–1111. doi:10.1002/polb.23194. ISSN 0887-6266. https://onlinelibrary.wiley.com/doi/10.1002/polb.23194. 
  12. Maccarrone, Simona; Scherzinger, Christine; Holderer, Olaf; Lindner, Peter; Sharp, Melissa; Richtering, Walter; Richter, Dieter (2014-09-09). "Cononsolvency Effects on the Structure and Dynamics of Microgels". Macromolecules 47 (17): 5982–5988. doi:10.1021/ma500954t. ISSN 0024-9297. Bibcode2014MaMol..47.5982M. https://doi.org/10.1021/ma500954t. 
  13. Kyriakos, Konstantinos; Philipp, Martine; Adelsberger, Joseph; Jaksch, Sebastian; Berezkin, Anatoly V.; Lugo, Dersy M.; Richtering, Walter; Grillo, Isabelle et al. (2014-10-14). "Cononsolvency of Water/Methanol Mixtures for PNIPAM and PS-b-PNIPAM: Pathway of Aggregate Formation Investigated Using Time-Resolved SANS". Macromolecules 47 (19): 6867–6879. doi:10.1021/ma501434e. ISSN 0024-9297. Bibcode2014MaMol..47.6867K. https://doi.org/10.1021/ma501434e. 
  14. Chen, Qi; Kooij, E. Stefan; Sui, Xiaofeng; Padberg, Clemens J.; Hempenius, Mark A.; Schön, Peter M.; Vancso, G. Julius (2014). "Collapse from the top: brushes of poly(N-isopropylacrylamide) in co-nonsolvent mixtures" (in en). Soft Matter 10 (17): 3134–3142. doi:10.1039/c4sm00195h. ISSN 1744-683X. PMID 24695793. http://xlink.rsc.org/?DOI=c4sm00195h. 
  15. Kreuzer, Lucas P.; Lindenmeir, Christoph; Geiger, Christina; Widmann, Tobias; Hildebrand, Viet; Laschewsky, André; Papadakis, Christine M.; Müller-Buschbaum, Peter (2021-02-09). "Poly(sulfobetaine) versus Poly(N-isopropylmethacrylamide): Co-Nonsolvency-Type Behavior of Thin Films in a Water/Methanol Atmosphere". Macromolecules 54 (3): 1548–1556. doi:10.1021/acs.macromol.0c02281. ISSN 0024-9297. Bibcode2021MaMol..54.1548K. https://doi.org/10.1021/acs.macromol.0c02281. 
  16. Kreuzer, Lucas P.; Geiger, Christina; Widmann, Tobias; Wang, Peixi; Cubitt, Robert; Hildebrand, Viet; Laschewsky, André; Papadakis, Christine M. et al. (2021-08-10). "Solvation Behavior of Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Mixed Water/Methanol Vapors". Macromolecules 54 (15): 7147–7159. doi:10.1021/acs.macromol.1c01179. ISSN 0024-9297. Bibcode2021MaMol..54.7147K. https://doi.org/10.1021/acs.macromol.1c01179. 
  17. Geiger, Christina; Reitenbach, Julija; Kreuzer, Lucas P.; Widmann, Tobias; Wang, Peixi; Cubitt, Robert; Henschel, Cristiane; Laschewsky, André et al. (2021-04-13). "PMMA-b-PNIPAM Thin Films Display Cononsolvency-Driven Response in Mixed Water/Methanol Vapors". Macromolecules 54 (7): 3517–3530. doi:10.1021/acs.macromol.1c00021. ISSN 0024-9297. Bibcode2021MaMol..54.3517G. https://doi.org/10.1021/acs.macromol.1c00021. 
  18. Geiger, Christina; Reitenbach, Julija; Henschel, Cristiane; Kreuzer, Lucas P.; Widmann, Tobias; Wang, Peixi; Mangiapia, Gaetano; Moulin, Jean-François et al. (November 2021). "Ternary Nanoswitches Realized with Multiresponsive PMMA‐ b ‐PNIPMAM Films in Mixed Water/Acetone Vapor Atmospheres" (in en). Advanced Engineering Materials 23 (11): 2100191. doi:10.1002/adem.202100191. ISSN 1438-1656. 
  19. Walter, Jonathan; Sehrt, Jan; Vrabec, Jadran; Hasse, Hans (2012-05-03). "Molecular Dynamics and Experimental Study of Conformation Change of Poly(N-isopropylacrylamide) Hydrogels in Mixtures of Water and Methanol". The Journal of Physical Chemistry B 116 (17): 5251–5259. doi:10.1021/jp212357n. ISSN 1520-6106. PMID 22432852. https://doi.org/10.1021/jp212357n. 
  20. 20.0 20.1 Heyda, Jan; Muzdalo, Anja; Dzubiella, Joachim (2013-02-12). "Rationalizing Polymer Swelling and Collapse under Attractive Cosolvent Conditions". Macromolecules 46 (3): 1231–1238. doi:10.1021/ma302320y. ISSN 0024-9297. Bibcode2013MaMol..46.1231H. https://doi.org/10.1021/ma302320y. 
  21. Rodríguez-Ropero, Francisco; Hajari, Timir; van der Vegt, Nico F. A. (2015-12-24). "Mechanism of Polymer Collapse in Miscible Good Solvents". The Journal of Physical Chemistry B 119 (51): 15780–15788. doi:10.1021/acs.jpcb.5b10684. ISSN 1520-6106. PMID 26619003. https://doi.org/10.1021/acs.jpcb.5b10684. 
  22. Tucker, Ashley K.; Stevens, Mark J. (2012-08-28). "Study of the Polymer Length Dependence of the Single Chain Transition Temperature in Syndiotactic Poly(N-isopropylacrylamide) Oligomers in Water". Macromolecules 45 (16): 6697–6703. doi:10.1021/ma300729z. ISSN 0024-9297. Bibcode2012MaMol..45.6697T. https://doi.org/10.1021/ma300729z. 
  23. Tanaka, Fumihiko; Koga, Tsuyoshi; Kojima, Hiroyuki; Xue, Na; Winnik, Françoise M. (2011-04-26). "Preferential Adsorption and Co-nonsolvency of Thermoresponsive Polymers in Mixed Solvents of Water/Methanol". Macromolecules 44 (8): 2978–2989. doi:10.1021/ma102695n. ISSN 0024-9297. Bibcode2011MaMol..44.2978T. https://doi.org/10.1021/ma102695n. 
  24. Backes, Sebastian; Krause, Patrick; Tabaka, Weronika; Witt, Marcus U.; Mukherji, Debashish; Kremer, Kurt; von Klitzing, Regine (2017-10-17). "Poly(N-isopropylacrylamide) Microgels under Alcoholic Intoxication: When a LCST Polymer Shows Swelling with Increasing Temperature". ACS Macro Letters 6 (10): 1042–1046. doi:10.1021/acsmacrolett.7b00557. PMID 35650939. https://doi.org/10.1021/acsmacrolett.7b00557. 
  25. Bischofberger, I.; Calzolari, D. C. E.; Trappe, V. (2014-10-01). "Co-nonsolvency of PNiPAM at the transition between solvation mechanisms" (in en). Soft Matter 10 (41): 8288–8295. doi:10.1039/C4SM01345J. ISSN 1744-6848. PMID 25192016. Bibcode2014SMat...10.8288B. https://pubs.rsc.org/en/content/articlelanding/2014/sm/c4sm01345j. 
  26. Dalgicdir, Cahit; Rodríguez-Ropero, Francisco; van der Vegt, Nico F. A. (2017-08-17). "Computational Calorimetry of PNIPAM Cononsolvency in Water/Methanol Mixtures" (in en). The Journal of Physical Chemistry B 121 (32): 7741–7748. doi:10.1021/acs.jpcb.7b05960. ISSN 1520-6106. PMID 28731710. https://pubs.acs.org/doi/10.1021/acs.jpcb.7b05960. 
  27. Tavagnacco, Letizia; Zaccarelli, Emanuela; Chiessi, Ester (2020-01-01). "Molecular description of the coil-to-globule transition of Poly(N-isopropylacrylamide) in water/ethanol mixture at low alcohol concentration" (in en). Journal of Molecular Liquids 297: 111928. doi:10.1016/j.molliq.2019.111928. ISSN 0167-7322. https://www.sciencedirect.com/science/article/pii/S0167732219349050. 
  28. Bharadwaj, Swaminath; Nayar, Divya; Dalgicdir, Cahit; van der Vegt, Nico F. A. (2020-11-11). "A cosolvent surfactant mechanism affects polymer collapse in miscible good solvents" (in en). Communications Chemistry 3 (1): 165. doi:10.1038/s42004-020-00405-x. ISSN 2399-3669. PMID 36703319. 
  29. Bharadwaj, Swaminath; Nayar, Divya; Dalgicdir, Cahit; van der Vegt, Nico F. A. (2021-04-07). "An interplay of excluded-volume and polymer–(co)solvent attractive interactions regulates polymer collapse in mixed solvents" (in en). The Journal of Chemical Physics 154 (13): 134903. doi:10.1063/5.0046746. ISSN 0021-9606. PMID 33832270. 
  30. Sommer, Jens-Uwe (2017-03-14). "Adsorption–Attraction Model for Co-Nonsolvency in Polymer Brushes" (in en). Macromolecules 50 (5): 2219–2228. doi:10.1021/acs.macromol.6b02231. ISSN 0024-9297. https://pubs.acs.org/doi/10.1021/acs.macromol.6b02231. 
  31. Mukherji, Debashish; Marques, Carlos M.; Kremer, Kurt (2014-09-12). "Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption" (in en). Nature Communications 5 (1): 4882. doi:10.1038/ncomms5882. ISSN 2041-1723. PMID 25216245. Bibcode2014NatCo...5.4882M. 
  32. Zhu, Peng-wei; Chen, Luguang (2019-02-11). "Effects of cosolvent partitioning on conformational transitions and chain flexibility of thermoresponsive microgels". Physical Review E 99 (2): 022501. doi:10.1103/PhysRevE.99.022501. PMID 30934277. Bibcode2019PhRvE..99b2501Z. https://link.aps.org/doi/10.1103/PhysRevE.99.022501. 
  33. Yong, Huaisong; Sommer, Jens-Uwe (2022-12-27). "Cononsolvency Effect: When the Hydrogen Bonding between a Polymer and a Cosolvent Matters" (in en). Macromolecules 55 (24): 11034–11050. doi:10.1021/acs.macromol.2c01428. ISSN 0024-9297. https://pubs.acs.org/doi/10.1021/acs.macromol.2c01428. 
  34. Fernández-Piérola, Inés; Horta, Arturo (1980-10-01). "Co-nonsolvency of PMMA" (in en). Polymer Bulletin 3 (5): 273–278. doi:10.1007/BF00254873. ISSN 1436-2449. https://doi.org/10.1007/BF00254873.