Chemistry:Grape reaction product

From HandWiki
Revision as of 21:22, 5 February 2024 by Rtextdoc (talk | contribs) (correction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Grape reaction product
Chemical structure of grape reaction product
Names
IUPAC name
2-[(E)-3-[3-[2-[(4-amino-4-carboxybutanoyl)amino]-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-4,5-dihydroxyphenyl]prop-2-enoyl]oxy-3-hydroxybutanedioic acid
Other names
GRP
GRP1
2-S-Glutathionyl caftaric acid
Identifiers
3D model (JSmol)
ChEBI
Properties
C23H27N3O15S
Molar mass 617.54 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

The grape reaction product (GRP, GRP1 or 2-S-glutathionyl caftaric acid[1]) is a phenolic compound explaining the disappearance of caftaric acid from grape must during processing.[2] It is also found in aged red wines.[3] Its enzymatic production by polyphenol oxidase is important in limiting the browning of musts,[4] especially in white wine production. The product can be recreated in model solutions.[5][6]

Determining its concentration in wine is possible by mass spectrometry.[7]

S-Glutathionyl caftaric acid is itself oxidizable.[8] It is not a substrate for grape polyphenol oxidase, but laccase from Botrytis cinerea can use it to form GRP2.[9]

Related molecules

Other related molecules are trans-caffeoyltartrate derivatives like GRP o-quinone[10] and 2,5-di-S-glutathionyl cafteoyl tartrate (GRP2)[11] or adducts with anthocyanidins.[12]

Caftaric acid UV visible spectrum.png
Caftaric acid UV visible spectrum

See also

  • Phenolic compounds in wine

References

  1. Veronique F. Cheynier; Eugene K. Trousdale; Vernon L. Singleton; Michel J. Salgues; Renee Wylde (1986). "Characterization of 2-S-glutathionyl caftaric acid and its hydrolysis in relation to grape wines". J. Agric. Food Chem. 34 (2): 217–221. doi:10.1021/jf00068a016. 
  2. Caftaric acid in grapes and conversion to a reaction product during processing. V.L. Singleton, J. Zaya, E. Trousdale and M. Salgues, Vitis, 1984, pages 113-120 (article)
  3. Anis Arnous; Dimitris P. Makris; Panagiotis Kefalas (2001). "Effect of Principal Polyphenolic Components in Relation to Antioxidant Characteristics of Aged Red Wines". J. Agric. Food Chem. 49 (12): 5736–5742. doi:10.1021/jf010827s. PMID 11743756. 
  4. V.L. Singleton; M. Salgues; J. Zaya; E. Trousdale (1985). "Caftaric Acid Disappearance and Conversion to Products of Enzymic Oxidation in Grape Must and Wine". Am. J. Enol. Vitic. 36 (1): 50. http://www.ajevonline.org/cgi/reprint/36/1/50.pdf. 
  5. V. Cheynier; C. Owe; J. Rigaud (1988). "Oxidation of Grape Juice Phenolic Compounds in Model Solutions". Journal of Food Science 53 (6): 1729–1732. doi:10.1111/j.1365-2621.1988.tb07828.x. 
  6. Veronique Cheynier; Jorge M. Ricardo da Silva (1991). "Oxidation of grape procyanidins in model solutions containing trans-caffeoyltartaric acid and polyphenol oxidase". J. Agric. Food Chem. 39 (6): 1047–1049. doi:10.1021/jf00006a008. 
  7. Straightforward Method To Quantify GSH, GSSG, GRP, and Hydroxycinnamic Acids in Wines by UPLC-MRM-MS. Anna Vallverdú-Queralt, Arnaud Verbaere, Emmanuelle Meudec, Veronique Cheynier and Nicolas Sommerer, J. Agric. Food Chem. 2015, 63, 142−149, doi:10.1021/jf504383g
  8. Caftaric Acid Disappearance and Conversion to Products of Enzymic Oxidation in Grape Must and Wine. V. L. Singleton, M. Salgues, J. Zaya and E. Trousdale, Am. J. Enol. Vitic, 1985, volume 36, number 1, pages 50-56 'abstract)
  9. Salgues, M.; Cheynier, V.; Gunata, Z.; Wylde, R. (1986). "Oxidation of Grape Juice 2-S-Glutathionyl Caffeoyl Tartaric Acid by Botrytis cinerea Laccase and Characterization of a New Substance: 2,5-di-S-Glutathionyl Caffeoyl Tartaric Acid". Journal of Food Science 51 (5): 1191. doi:10.1111/j.1365-2621.1986.tb13081.x. 
  10. Cheynier V.; Rigaud J.; Souquet J.-M.; Duprat F.; Moutounet M. (1990). "Must browning in relation to the behavior of phenolic compounds during oxidation". American Journal of Enology and Viticulture 41 (4): 346–349. INIST:5402970
  11. Véronique Cheynier; Jacques Rigaud; Michel Moutounet (1990). "Oxidation kinetics of trans-caffeoyltartrate and its glutathione derivatives in grape musts". Phytochemistry 29 (6): 1751–1753. doi:10.1016/0031-9422(90)85008-4. 
  12. Petros Kneknopoulos; George K. Skouroumounis; Yoji Hayasaka; Dennis K. Taylor (2011). "New Phenolic Grape Skin Products from Vitis vinifera cv. Pinot Noir". J. Agric. Food Chem. 59 (3): 1005–1011. doi:10.1021/jf103682x. PMID 21214245.