Chemistry:Hydrolysis constant

From HandWiki
Revision as of 02:28, 6 February 2024 by ScienceGen (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The word hydrolysis is applied to chemical reactions in which a substance reacts with water. In organic chemistry, the products of the reaction are usually molecular, being formed by combination with H and OH groups (e.g., hydrolysis of an ester to an alcohol and a carboxylic acid). In inorganic chemistry, the word most often applies to cations forming soluble hydroxide or oxide complexes with, in some cases, the formation of hydroxide and oxide precipitates.

Metal hydrolysis and associated equilibrium constant values

The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:

p Mz+ + q H2O ⇌ Mp(OH)q(pz–q) + q H+

and the corresponding formation constant as:

[math]\displaystyle{ \beta_{pq} = \frac{[M_p(OH)_q^{(pz-q)}][H^+]^q}{[M^{z+}]^p} }[/math]

and associated equilibria can be written as:

MOx(OH)z–2x(s) + z H+ ⇌ Mz+ + (z–x) H2O
MOx(OH)z–2x(s) + x H2O ⇌ Mz+ + z OH
p MOx(OH)z–2x(s) + (pz–q) H+ ⇌ Mp(OH)q(pz–q) + (pz–px–q) H2O

Aluminium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[1] Brown and Ekberg, 2016[2] Hummel and Thoenen, 2023[3]
Al3+ + H2O ⇌ AlOH2+ + H+ –4.97 −4.98 ± 0.02 −4.98 ± 0.02
Al3+ + 2 H2O ⇌ Al(OH)2+ + 2 H+ –9.3 −10.63 ± 0.09 −10.63 ± 0.09
Al3+ + 3 H2O ⇌ Al(OH)3 + 3 H+ –15.0 −15.66 ± 0.23 −15.99 ± 0.23
Al3+ + 4 H2O ⇌ Al(OH)4 + 4 H+ –23.0 −22.91 ± 0.10 −22.91 ± 0.10
2 Al3+ + 2 H2O ⇌ Al2(OH)24+ + 2 H+ –7.7 −7.62 ± 0.11 −7.62 ± 0.11
3 Al3+ + 4 H2O ⇌ Al3(OH)45+ + 4 H+ –13.94 −14.06 ± 0.22 −13.90 ± 0.12
13 Al3+ + 28 H2O ⇌ Al13O4(OH)247+ + 32 H+ –98.73 −100.03 ± 0.09 −100.03 ± 0.09
α-Al(OH)3(s) + 3 H+ ⇌ Al3+ + 3 H2O 8.5 7.75 ± 0.08 7.75 ± 0.08
γ-AlOOH(s) + 3 H+ ⇌ Al3+ + 3 H2O 7.69 ± 0.15 9.4 ± 0.4

Americium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction NIST46[4] Brown and Ekberg, 2016[5] Grenthe et al, 2020[6]
Am3+ + H2O ⇌ Am(OH)2+ + H+ –6.5 ± 0.1 –7.22 ± 0.03 –7.2 ± 0.5
Am3+ + 2 H2O ⇌ Am(OH)2+ + 2 H+ –14.1 ± 0.3 –14.9 ± 0.2 –15.1 ± 0.7
Am3+ + 3 H2O ⇌ Am(OH)3 + 3 H+ –25.7 –26.0 ± 0.2 –26.2 ± 0.5
Am3+ + 3 H2O ⇌ Am(OH)3(am) + 3 H+ –16.9 ± 0.1 –16.9 ± 0.8 –16.9 ± 0.8
Am3+ + 3 H2O ⇌ Am(OH)3(cr) + 3 H+ –15.2 –15.62 ± 0.04 –15.6 ± 0.6

Americium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[7] Grenthe et al, 2020[6]
AmO2+ + H2O ⇌ AmO2(OH) + H+ –10.7 ± 0.2
AmO2+ + 2 H2O ⇌ AmO2(OH)2 + 2 H+ –22.9 ± 0.7
AmO2+ + H2O ⇌ AmO2(OH)(am) + H+ –5.4 ± 0.4 –5.3 ± 0.5

Antimony(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[8] Lothenbach et al., 1999;[9]

Kitamura et al., 2010[10]

Filella and May, 2003[11]
Sb(OH)3 + H+ ⇌ Sb(OH)2+ + H2O 1.41 1.30 1.371
Sb(OH)3 + H2O ⇌ Sb(OH)4 + H+ ‒11.82 ‒11.93 ‒11.70
0.5 Sb2O3(s) + 1.5 H2O ⇌ Sb(OH)3 ‒4.24
Sb2O3(rhombic,s) + 3 H2O ⇌ 2 Sb(OH)3 ‒8.72 ‒10.00
Sb2O3(cubic,s) + 3 H2O ⇌ 2 Sb(OH)3 ‒11.40

Antimony(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[8] Lothenbach et al., 1999;[9] Kitamura et al., 2010[10]
Sb(OH)5 + H2O ⇌ Sb(OH)6 + H+ ‒2.72 ‒2.72
12 Sb(OH)5 + 4 H2O ⇌ Sb12(OH)644‒ + 4 H+ 20.34 20.34
12 Sb(OH)5 + 5 H2O ⇌ Sb12(OH)655‒ + 5 H+ 16.72 16.72
12 Sb(OH)5 + 6 H2O ⇌ Sb12(OH)666‒ + 6 H+ 11.89 11.89
12 Sb(OH)5 + 7 H2O ⇌ Sb12(OH)677‒ + 7 H+ 6.07 6.07
0.5 Sb2O5(s) + 2.5 H2O ⇌ Sb(OH)5 ‒3.7
Sb2O5(am) + 5 H2O ⇌ 2 Sb(OH)5 ‒7.400

Arsenic(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[12] Nordstrom and Archer, 2003[13] Nordstrom et al., 2014[14]
As(OH)4 + H+ ⇌ As(OH)3 + H2O 9.29 9.17 9.24 ± 0.02

Arsenic(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer[12] Khodakovsky et al. (1968)[15] Nordstrom and Archer, 2003[13] Nordstrom et al., 2014[14]
H2AsO4 + H+ ⇌ H3AsO4 2.24 2.21 2.26 ± 0.078 2.25 ± 0.04
HAsO42‒ + H+ ⇌ H2AsO4 6.93 6.99 ± 0.1 6.98 ± 0.11
AsO43‒ + H+ ⇌ HAsO42‒ 11.51 11.80 ± 0.1 11.58 ± 0.05
HAsO42‒ + 2 H+ ⇌H3AsO4 9.20
AsO43‒ + 3 H+ ⇌ H3AsO4 20.70

Barium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[16] Nordstrom et al., 1990[17] Brown and Ekberg, 2016[18]
Ba2+ + H2O ⇌ BaOH+ + H+ –13.47 –13.47 –13.32 ± 0.07

Berkelium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[19]
Bk3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+ –13.5 ± 1.0

Beryllium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[20]
Be2+ + H2O ⇌ BeOH+ + H+ –5.10
Be2+ + 2 H2O ⇌ Be(OH)2 + 2 H+ –23.65
Be2+ + 3 H2O ⇌ Be(OH)3 + 3 H+ –23.25
Be2+ + 4 H2O ⇌ Be(OH)42– + 4 H+ –37.42
2 Be2+ + H2O ⇌ Be2OH3+ + H+ –3.97
3 Be2+ + 3 H2O ⇌ Be3(OH)33+ + 3 H+ –8.92
6 Be2+ + 8 H2O ⇌ Be6(OH)84+ + 8 H+ –27.2
α-Be(OH)2(cr) + 2 H+ ⇌ Be2+ + 2 H2O 6.69

Bismuth

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[21] Lothenbach et

al., 1999[9]

NIST46[4] Kitamura et

al., 2010[10]

Brown and

Ekberg, 2016[22]

Bi3+ + H2O ⇌ BiOH2+ + H+ –1.0 –0.92 –1.1 –0.920 –0.92 ± 0.15
Bi3+ + 2 H2O ⇌ Bi(OH)2+ + 2 H+ (–4) –2.56 –4.5 –2.560 ± 1.000 –2.59 ± 0.26
Bi3+ + 3 H2O ⇌ Bi(OH)3 + 3 H+ –8.86 –5.31 –9.0 –8.940 ± 0.500 –8.78 ± 0.20
Bi3+ + 4 H2O ⇌ Bi(OH)4 + 4 H+ –21.8 –18.71 –21.2 –21.660 ± 0.870 –22.06 ± 0.14
3 Bi3+ + 4 H2O ⇌ Bi3(OH)45+ + 4 H+ –0.80 –0.800
6 Bi3+ + 12 H2O ⇌ Bi6(OH)126+ + 12 H+ 1.34 1.340 0.98 ± 0.13
9 Bi3+ + 20 H2O = Bi9(OH)207+ + 20 H+ –1.36 –1.360
9 Bi3+ + 21 H2O = Bi9(OH)216+ + 21 H+ –3.25 –3.250
9 Bi3+ + 22 H2O = Bi9(OH)225+ + 22 H+ –4.86 –4.860
Bi(OH)3(am) + 3 H+ = Bi3+ + 3 H2O 31.501 ± 0.927
α-Bi2O3(cr) + 6 H+ = 2 Bi3+ + 3 H2O 0.76
BiO1.5(s, α) + 3 H+ = Bi3+ + 1.5 H2O 3.46 31.501 ± 0.927 2.88 ± 0.64

Boron

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[23] NIST46[4]
B(OH)3 + H2O ⇌ Be(OH)4+ + H+ –9.236 –9.236 ± 0.002
2 B(OH)3 ⇌ B2(OH)5 + H+ –9.36 –9.306
3 B(OH)3 ⇌ B3O3(OH)4 + H+ + 2 H2O –7.03 –7.306
4 B(OH)3 ⇌ B4O5(OH)42– + 2 H+ + 3 H2O –16.3 –15.032

Cadmium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[24] Powell et al., 2011[25] Brown and Ekberg, 2016[26]
Cd2+ + H2O ⇌ CdOH+ + H+ −10.08 –9.80 ± 0.10 −9.81 ± 0.10
Cd2+ + 2 H2O ⇌ Cd(OH)2 + 2 H+ –20.35 –20.19 ± 0.13 −20.6 ± 0.4
Cd2+ + 3 H2O ⇌ Cd(OH)3 + 3 H+ <–33.3 –33.5 ± 0.5 −33.5 ± 0.5
Cd2+ + 4 H2O ⇌ Cd(OH)42– + 4 H+ –47.35 –47.28 ± 0.15 −47.25 ± 0.15
2 Cd2+ + H2O ⇌ Cd2OH3+ + H+ –9.390 –8.73 ± 0.01 −8.74 ± 0.10
4 Cd2+ + 4 H2O ⇌ Cd4(OH)44+ + H+ –32.85
Cd(OH)2(s) ⇌ Cd2+ + 2 OH –14.28 ± 0.12
Cd(OH)2(s) + 2 H+ ⇌ Cd2+ + 2 H2O 13.65 13.72 ± 0.12 13.71 ± 0.12

Calcium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[16] Nordstrom et al., 1990[17] Brown and Ekberg, 2016[27]
Ca2+ + H2O ⇌ CaOH+ + H+ –12.85 –12.78 –12.57 ± 0.03
Ca(OH)2(cr) + 2 H+ ⇌ Ca2+ + 2 H2O 22.80 22.8 22.75 ± 0.02

Californium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[19]
Cf3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+ –13.0 ± 1.0

Cerium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] NIST46[4] Brown and Ekberg, 2016[29]
Ce3+ + H2O ⇌ CeOH2+ + H+ –8.3 –8.3 –8.31 ± 0.03
2 Ce3+ + 2 H2O ⇌ Ce2(OH)24+ + 2 H+ –16.0 ± 0.2
3 Ce3+ + 5 H2O ⇌ Ce3(OH)54+ + 5 H+ –34.6 ± 0.3
Ce(OH)3(s) + 3 H+ ⇌ Ce3+ + 3 H2O 18.5 ± 0.5
Ce(OH)3(s) ⇌ Ce3+ + 3 OH –22.1 ± 0.9

Chromium(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):

Reaction NIST46[4] Ball and Nordstrom, 1988[30]
Cr2+ + H2O ⇌ CrOH+ + H+ –5.5
Cr(OH)2(s) ⇌ Cr2+ + 2 OH –17 ± 0.02

Chromium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[31] Rai et al., 1987[32] Ball and Nordstrom, 1988[30] Brown and Ekberg, 2016[33]
Cr3+ + H2O ⇌ CrOH2+ + H+ –4.0 –3.57 ± 0.08 –3.60 ± 0.07
Cr3+ + 2 H2O ⇌ Cr(OH)2+ + 2 H+ –9.7 –9.84 –9.65 ± 0.20
Cr3+ + 3 H2O ⇌ Cr(OH)3 + 3 H+ –18 –16.19 –16.25 ± 0.19
Cr3+ + 4 H2O ⇌ Cr(OH)4- + 4 H+ –27.4 –27.65 ± 0.12 –27.56 ± 0.21
2 Cr3+ + 2 H2O ⇌ Cr2(OH)24+ + 2 H+ –5.06 –5.0 –5.29 ± 0.16
3 Cr3+ + 4 H2O ⇌ Cr3(OH)45+ + 4 H+ –8.15 –10.75 ± 0.15 –9.10 ± 0.14
Cr(OH)3(s) + 3 H+ ⇌ Cr3+ + 3 H2O 12 9.35 9.41 ± 0.17
Cr2O3(s) + 6 H+ ⇌ 2 Cr3+ + 3 H2O 8.52
CrO1.5(s) + 3 H+ ⇌ Cr3+ + 1.5 H2O 7.83 ± 0.10

Chromium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[34] Ball and Nordstrom, 1998[30]
CrO42– + H+ ⇌ HCrO4 6.51 6.55 ± 0.04
HCrO4 + H+ ⇌ H2CrO4 –0.20
CrO42– + 2 H+ ⇌ H2CrO4 6.31
2 HCrO4 ⇌ Cr2O72– + H2O 1.523
2 CrO42– + 2 H+ ⇌ Cr2O72– + H2O 14.7 ± 0.1

Cobalt(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[35] Brown and Ekberg, 2016[36]
Co2+ + H2O ⇌ CoOH+ + H+ –9.65 −9.61 ± 0.17
Co2+ + 2 H2O ⇌ Co(OH)2 + 2 H+ –18.8 −19.77 ± 0.11
Co2+ + 3 H2O ⇌ Co(OH)3 + 3 H+ –31.5 −32.01 ± 0.33
Co2+ + 4 H2O ⇌ Co(OH)42– + 4 H+ –46.3
2 Co2+ + H2O ⇌ Co2(OH)3+ + H+ –11.2
4 Co2+ + 4 H2O ⇌ Co4(OH)44+ + 4H+ –30.53
Co(OH)2(s) + 2 H+ ⇌ Co2+ + 2 H2O 12.3 13.24 ± 0.12
CoO(s) + 2 H+ ⇌ Co2+ + H2O 13.71 ± 0.10

Cobalt(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[37]
Co3+ + H2O ⇌ CoOH2+ + H+ −1.07 ± 0.11

Copper(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[38]
Cu+ + H2O ⇌ CuOH + H+ –7.8 ± 0.4
Cu+ + 2 H2O ⇌ Cu(OH)2 + 2 H+ –18.6 ± 0.6

Copper(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[39] NIST46[4] Plyasunova et al., 1997[40] Powell et al., 2007[41] Brown and Ekberg, 2016[38]
Cu2+ + H2O ⇌ CuOH+ + H+ < –8 –7.7 –7.97 ± 0.09 –7.95 ± 0.16 –7.64 ± 0.17
Cu2+ + 2 H2O ⇌ Cu(OH)2 + 2 H+ (< –17.3) –17.3 –16.23 ± 0.15 –16.2 ± 0.2 –16.24 ± 0.03
Cu2+ + 3 H2O ⇌ Cu(OH)3 + 3 H+ (< –27.8) –27.8 –26.63 ± 0.40 –26.60 ± 0.09 –26.65 ± 0.13
Cu2+ + 4 H2O ⇌ Cu(OH)42– + 4 H+ –39.6 –39.6 –39.73 ± 0.17 –39.74 ± 0.18 –39.70 ± 0.19
2 Cu2+ + H2O ⇌ Cu2(OH)3+ + H+ –6.71 ± 0.30 –6.40 ± 0.12 –6.41 ± 0.17
2 Cu2+ + 2 H2O ⇌ Cu2(OH)22+ + 2 H+ –10.36 –10.3 –10.55 ± 0.17 –10.43 ± 0.07 –10.55 ± 0.02
3 Cu2+ + 4 H2O ⇌ Cu3(OH)42+ + 4 H+ –20.95 ± 0.30 –21.1 ± 0.2 –21.2 ± 0.4
CuO(s) + 2 H+ ⇌ Cu2+ + H2O 7.62 7.64 ± 0.06 7.64 ± 0.06 7.63 ± 0.05
Cu(OH)2(s) + 2 H+ ⇌ Cu2+ + 2 H2O 8.67 ± 0.05 8.68 ± 0.10

Curium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[42]
Cm3+ + H2O ⇌ Cm(OH)2+ + H+ −7.66 ± 0.07
Cm3+ + 2 H2O ⇌ Cm(OH)2+ + 2 H+ −15.9 ± 0.1
Cm3+ + 3 H2O ⇌ Cm(OH)3(s) + 3 H+ −13.9 ± 0.4

Dysprosium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] Brown and Ekberg, 2016[43]
Dy3+ + H2O ⇌ DyOH2+ + H+ −8.0 −7.53 ± 0.14
Dy3+ + 2 H2O ⇌ Dy(OH)2+ + 2 H+ (–16.2)
Dy3+ + 3 H2O ⇌ Dy(OH)3 + 3 H+ (–24.7)
Dy3+ + 4 H2O ⇌ Dy(OH)4 + 4 H+ –33.5
2 Dy3+ + 2 H2O ⇌ Dy2(OH)24+ + 2 H+ −13.76 ± 0.20
3 Dy3+ + 5 H2O ⇌ Dy3(OH)54+ + 5 H+ −30.6 ± 0.3
Dy(OH)3(s) + 3 H+ ⇌ Dy3+ + 3 H2O 15.9 16.26 ± 0.30
Dy(OH)3(c) + OH ⇌ Dy(OH)4 −3.6
Dy(OH)3(c) ⇌ Dy(OH)3 −8.8

Erbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] Brown and Ekberg, 2016[44]
Er3+ + H2O ⇌ ErOH2+ + H+ −7.9 −7.46 ± 0.09
Er3+ + 2 H2O ⇌ Er(OH)2+ + 2 H+ (−15.9)
Er3+ + 3 H2O ⇌ Er(OH)3 + 3 H+ (−24.2)
Er3+ + 4 H2O ⇌ Er(OH)4 + 4 H+ −32.6
2 Er3+ + 2 H2O ⇌ Er2(OH)24+ + 2 H+ −13.65 −13.50 ± 0.20
3 Er3+ + 5 H2O ⇌ Er3(OH)54+ + 5 H+ <−29.3 −31.0 ± 0.3
Er(OH)3(s) + 3 H+ ⇌ Er3+ + 3 H2O 15.0 15.79 ± 0.30
Er(OH)3(c) + OH ⇌ Er(OH)4 −3.6
Er(OH)3(c) ⇌ Er(OH)3 ~ −9.2

Europium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] NIST46[4] Hummel et al., 2002[45] Brown and Ekberg, 2016[29]
Eu3+ + H2O ⇌ EuOH2+ + H+ –7.8 –7.64 ± 0.04 –7.66 ± 0.05
Eu3+ + 2 H2O ⇌ Eu(OH)2+ + 2 H+ –15.1 ± 0.2
Eu3+ + 3 H2O ⇌ Eu(OH)3 + 3 H+ –23.7 ± 0.1
Eu3+ + 4 H2O ⇌ Eu(OH)4 + 4 H+ –36.2 ± 0.5
2 Eu3+ + 2 H2O ⇌ Eu2(OH)24+ + 2 H+ - –14.1 ± 0.2
3 Eu3+ + 5 H2O ⇌ Eu3(OH)54+ + 5 H+ - –32.0 ± 0.3
Eu(OH)3(s) + 3 H+ ⇌ Eu3+ + 3 H2O 17.5 17.6 ± 0.8 (am)

14.9 ± 0.3 (cr)

16.48 ± 0.30
Eu(OH)3(s) ⇌ Eu3+ + 3 OH –24.5 ± 0.7 (am)

–26.5 (cr)

Gadolinium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[46] Brown and Ekberg, 2016[47]
Gd3+ + H2O ⇌ GdOH2+ + H+ –8.0 –7.87 ± 0.05
Gd3+ + 2 H2O ⇌ Gd(OH)2+ + 2 H+ (–16.4)
Gd3+ + 3 H2O ⇌ Gd(OH)3 + 3 H+ (–25.2)
Gd3+ + 4 H2O ⇌ Gd(OH)4 + 4 H+ –34.4
2 Gd3+ + 2 H2O ⇌ Gd2(OH)24+ + 2 H+ –14.16 ± 0.20
3 Gd3+ + 5 H2O ⇌ Gd3(OH)54+ + 5 H+ –33.0 ± 0.3
Gd(OH)3(s) + 3 H+ ⇌ Gd3+ + 3 H2O 15.6 17.20 ± 0.48
Gd(OH)3(c) + OH ⇌ Gd(OH)4 –4.8
Gd(OH)3(c) ⇌ Gd(OH)3 –9.6

Gallium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[48] Smith et al., 2003[49] Brown and Ekberg, 2016[50]
Ga3+ + H2O ⇌ GaOH2+ + H+ –2.6 –2.897 –2.74
Ga3+ + 2 H2O ⇌ Ga(OH)2+ + 2 H+ –5.9 –6.694 –7.0
Ga3+ + 3 H2O ⇌ Ga(OH)3 + 3 H+ –10.3 –11.96
Ga3+ + 4 H2O ⇌ Ga(OH)4 + 4 H+ –16.6 –16.588 –15.52
Ga(OH)3(s) ⇌ Ga3+ + 3 OH [math]\displaystyle{ \approx }[/math]–37 –37.0
GaO(OH)(s) + H2O ⇌ Ga3+ + 3 OH –39.06 –39.1 –40.51

Germanium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[51] Wood and Samson, 2006[52] Filella and May, 2023[53]
Ge(OH)4 ⇌ GeO(OH)3- + H+ –9.31 –9.32 ± 0.05 –9.099
Ge(OH)4 ⇌ GeO2(OH)22+ + 2 H+ –21.9
GeO2(OH)22– + H+ ⇌ GeO(OH)3 12.76
8 Ge(OH)4 ⇌ Ge8O16(OH)33- + 13 H2O + 3 H+ –14.24
8 Ge(OH)4 + 3 OH ⇌ Ge8(OH)353– 28.33
GeO2(s, hexa) + 2 H2O ⇌ Ge(OH)4 –1.35 –1.373
GeO2(s, tetra) + 2 H2O ⇌ Ge(OH)4 -4.37 –5.02 –4.999

Gold(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[54]
Au(OH)3 +2 H+ ⇌ AuOH2+ + 2 H2O 1.51
Au(OH)3 + H+ ⇌ Au(OH)2+ + H2O < 1.0
Au(OH)3 + H2O ⇌ Au(OH)4 + H+ –11.77
Au(OH)3 + 2 H2O ⇌ Au(OH)52– + 2 H+ –25.13
Au(OH)52– + 3 H2O ⇌ Au(OH)63– + 3 H+ < –41.1
Au(OH)3(c) ⇌ Au(OH)3 –5.51

Hafnium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[55] Brown and Ekberg, 2016[56]
Hf4+ + H2O ⇌ HfOH3+ + H+ –0.25 −0.26 ± 0.10
Hf4+ + 2 H2O ⇌ Hf(OH)22+ + 2 H+ (–2.4)
Hf4+ + 3 H2O ⇌ Hf(OH)3+ + 3 H+ (–6.0)
Hf4+ + 4 H2O ⇌ Hf(OH)4 + 4 H+ –10.7* −3.75 ± 0.34*
Hf4+ + 5 H2O ⇌ Hf(OH)5 + 5 H+ –17.2
3 Hf4+ + 4 H2O ⇌ Hf3(OH)48+ + 4 H+ 0.55 ± 0.30
4 Hf4+ + 8 H2O ⇌ Hf4(OH)88+ + 8 H+ 6.00 ± 0.30
HfO2(s) + 4 H+ ⇌ Hf4+ + 2 H2O –1.2* –5.56 ± 0.15*
HfO2(am) + 4 H+ ⇌ Hf4+ + 2 H2O –3.11 ± 0.20

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. Strongly suggested to refer to the original papers.

Holmium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] Brown and Ekberg, 2016[57]
Ho3+ + H2O ⇌ HoOH2+ + H+ −8.0 −7.43 ± 0.05
2 Ho3+ + 2 H2O ⇌ Ho2(OH)24+ + 2 H+ −13.5 ± 0.2
3 Ho3+ + 5 H2O ⇌ Ho3(OH)54+ + 5 H+ −30.9 ± 0.3
Ho(OH)3(s) + 3 H+ ⇌ Ho3+ + 3 H2O 15.4 15.60 ± 0.30

Indium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[58] NIST46[4] Brown and Ekberg, 2016[59]
In3+ + H2O ⇌ InOH2+ + H+ –4.00 –3.927 –3.96
In3+ + 2 H2O ⇌ In(OH)2+ + 2 H+ –7.82 –7.794 –9.16
In3+ + 3 H2O ⇌ In(OH)3 + 3 H+ –12.4 –12.391
In3+ + 4 H2O ⇌ In(OH)4 + 4 H+ –22.07 –22.088 –22.05
In(OH)3(s) ⇌ In3+ + 3 OH –36.92 –36.9 –36.92
1/2 In2O3(s) + 3/2 H2O ⇌ In3+ + 3 OH –35.24

Iridium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[60]
Ir3+ + H2O ⇌ IrOH2+ + H+ ‒3.77 ± 0.10
Ir3+ + 2 H2O ⇌ Ir(OH)2+ + 2 H+ ‒8.46 ± 0.20
Ir(OH)3(s) + 3 H+ ⇌ Ir3+ + 3 H2O 8.88 ± 0.20

Iron(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[61] Nordstrom et al., 1990[17] Hummel et al., 2002[45] Lemire et al., 2013[62] Brown and Ekberg, 2016[63]
Fe2+ + H2O ⇌ FeOH+ + H+ –9.3 –9.5 –9.5 –9.1 ± 0.4 −9.43 ± 0.10
Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2 H+ –20.5 −20.52 ± 0.08
Fe2+ + 3 H2O ⇌ Fe(OH)3- + 3 H+ –29.4 −32.68 ± 0.15
Fe(OH)2(s) +2 H+ ⇌ Fe2+ + 2 H2O 12.27 ± 0.88

Iron(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[61] Lemire et al., 2013[62] Brown and Ekberg, 2016[64]
Fe3+ + H2O ⇌ FeOH2+ + H+ –2.19 −2.15 ± 0.07 –2.20 ± 0.02
Fe3+ + 2 H2O ⇌ Fe(OH)2+ + 2 H+ –5.67 −4.8 ± 0.4 –5.71 ± 0.10
Fe3+ + 3 H2O ⇌ Fe(OH)3 + 3 H+ <–12 <–14 –12.42 ± 0.20
Fe3+ + 4 H2O ⇌ Fe(OH)4 + 4 H+ –21.6 −21.5 ± 0.5 –21.60 ± 0.23
2 Fe3+ + 2 H2O ⇌ Fe2(OH)24+ + 2 H+ –2.95 –2.91 ± 0.07 –2.91 ± 0.07
3 Fe3+ + 4 H2O ⇌ Fe3(OH)45+ + 4 H+ –6.3 −6.3 ± 0.1
Fe(OH)3(s) +3 H+ ⇌ Fe3+ + 3 H2O

2-line ferrihydrite

2.5 3.5 3.50 ± 0.20
Fe(OH)3(s) ⇌ Fe3+ + 3 OH

6-line ferrihydrite

−38.97 ± 0.64
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O

goethite

0.5 0.33 ± 0.10
α-FeOOH + H2O ⇌ Fe3+ + 3 OH

goethite

−41.83 ± 0.37
0.5 α-Fe2O3(s)+ 3 H+ ⇌ Fe3+ + 1.5 H2O

hematite

0.36 ± 0.40
0.5 α-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH

hematite

−42.05 ± 0.26
0.5 γ-Fe2O3(s) + 3 H+ ⇌ Fe3+ + 1.5 H2O

maghemite

1.61 ± 0.61
0.5 γ-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH

maghemite

−40.59 ± 0.29
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O

lepidocrocite

1.85 ± 0.37
γ-FeOOH + H2O ⇌ Fe3+ + 3 OH

lepidocrocite

−40.13 ± 0.37
Fe(OH)3(s) + 3 H+ ⇌ Fe3+ + 3 H2O

magnetite

−12.26 ± 0.26

Lanthanum

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[65] Brown and Ekberg, 2016[66]
La3+ + H2O ⇌ LaOH2+ + H+ –8.5 –8.89 ± 0.10
2 La3+ + 2 H2O ⇌ La2(OH)24+ + 2 H+ ≤ –17.5 –17.57 ± 0.20
3 La3+ + 5 H2O ⇌ La3(OH)54+ + 5 H+ ≤ –38.3 –37.8 ± 0.3
5 La3+ + 9 H2O ⇌ La5(OH)96+ + 9 H+ –71.2
La(OH)3(s) + 3 H+ ⇌ La3+ + 3 H2O 20.3 19.72 ± 0.34

Lead(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[67] NIST46[4] Powell et al, 2009[68] Brown and Ekberg, 2016[69] Cataldo et al., 2018[70]
Pb2+ + H2O ⇌ PbOH+ + H+ –7.71 –7.6 –7.46 ± 0.06 –7.49 ± 0.13 –6.47± 0.03
Pb2+ + 2 H2O ⇌ Pb(OH)2 + 2 H+ –17.12 –17.1 –16.94 ± 0.09 –16.99 ± 0.06 –16.12 ± 0.01
Pb2+ + 3 H2O ⇌ Pb(OH)3- + 3 H+ –28.06 –28.1 –28.03± 0.06 –27.94 ± 0.21 –28.4 ± 0.1
Pb2+ + 4 H2O ⇌ Pb(OH)42- + 4 H+ –40.8
2 Pb2+ + H2O ⇌ Pb2(OH)3+ + H+ –6.36 –6.4 –7.28± 0.09 –6.73 ± 0.31
3 Pb2+ + 4 H2O ⇌ Pb3(OH)42+ + 4 H+ –23.88 –23.9 –23.01 ± 0.07 –23.43 ± 0.10
3 Pb2+ + 5 H2O ⇌ Pb3(OH)5+ + 5 H+ –31.11 ± 0.10
4 Pb2+ + 4 H2O ⇌ Pb4(OH)44+ + 4 H+ –20.88 –20.9 –20.57± 0.06 –20.71 ± 0.18
6 Pb2+ + 8 H2O ⇌ Pb6(OH)84+ + 8 H+ –43.61 –43.6 –42.89± 0.07 –43.27 ± 0.47
PbO(s) + 2 H+ ⇌ Pb2+ + H2O 12.62 (red)

12.90 (yellow)

PbO(s) +H2O ⇌ Pb2+ + 2 OH –15.28 (red) -15.3 –15.3 (red)

–15.1 (yellow)

–15.37 ± 0.04 (red)

–15.1 ± 0.08 (yellow)

Pb2O(OH)2(s) +H2O ⇌ 2 Pb2+ + 4 OH –14.9
PbO(s) +H2O ⇌ Pb(OH)2 –4.4 (red)

–4.2 (yellow)

Pb2O(OH)2(s) +H2O ⇌ 2 Pb(OH)2 –4.0
PbO(s) + 2 H2O ⇌ Pb(OH)3 + H+ –1.4 (red)

–1.2 (yellow)

Pb2O(OH)2(s) + 2 H2O ⇌ 2 Pb(OH)3 + 2 H+ –1.0

Lead(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Feitknecht and Schindler, 1963[71]
β-PbO2 + 2 H2O ⇌ Pb4+ + 4 OH –64
β-PbO2 + 2 H2O + 2 OH ⇌ Pb(OH)62– –4.5

Lithium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[72] Nordstrom et al., 1990[17] Brown and Ekberg, 2016[73]
Li+ + H2O ⇌ LiOH + H+ –13.64 –13.64 –13.84 ± 0.14

Magnesium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[74] Nordstrom et al., 1990[17] Brown and Ekberg, 2016[75]
Mg2+ + H2O ⇌ MgOH+ + H+ –11.44 –11.44 –11.70 ± 0.04
4 Mg2+ + 4 H2O ⇌ Mg4(OH)44+ + 4 H+ –39.71
Mg(OH)2(cr) + 2 H+ ⇌ Mg2+ + 2 H2O 16.84 16.84 17.11 ± 0.04

Manganese(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969[76] Baes and Mesmer, 1976[77] Nordstrom et al., 1990[17] Hummel et al., 2002[45] Brown and Ekberg, 2016[78]
Mn2+ + H2O ⇌ MnOH+ + H+ –10.59 –10.59 –10.59 –10.59 −10.58 ± 0.04
Mn2+ + 2 H2O ⇌ Mn(OH)2 + 2 H+ –22.2 −22.18 ± 0.20
Mn2+ + 3 H2O ⇌ Mn(OH)3 + 3 H+ –34.8 −34.34 ± 0.45
Mn2+ + 4 H2O ⇌ Mn(OH)42– + 4 H+ –48.3 −48.28 ± 0.40
2 Mn2+ + H2O ⇌ Mn2OH3+ + H+ –10.56
2 Mn2+ + 3 H2O ⇌ Mn2(OH)3+ + 6 H+ –23.90
Mn(OH)2(s) + 2 H+ ⇌ Mn2+ + 2 H2O 15.2 15.2 15.2 15.19 ± 0.10
MnO(s) + 2 H+ ⇌ Mn2+ + H2O 17.94 ± 0.12

Manganese(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[79]
Mn3+ + H2O ⇌ MnOH2+ + H+ –11.70 ± 0.04

Mercury(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[80] Brown and Ekberg, 2016[81]
Hg22+ + H2O ⇌ Hg2OH+ + H+ −5.0a −4.45 ± 0.10

(a) 0.5 M HClO4

Mercury(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[82] Powell et all, 2005[83] Brown and Ekberg, 2016[79]
Hg2+ + H2O ⇌ HgOH+ + H+ −3.40 –3.40 ± 0.08 –3.40 ± 0.08
Hg2+ + 2 H2O ⇌ Hg(OH)2 + 2 H+ -6.17 –5.98 ± 0.06 −5.96 ± 0.07
Hg2+ + 3 H2O ⇌ Hg(OH)3 + 3 H+ –21.1 –21.1 ± 0.3
HgO(s) + 2 H+ ⇌ Hg2+ + H2O 2.56 2.37 ± 0.08 2.37 ± 0.08

Molybdenum(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 (a) or 0.1 M Na+ medium, Data at I = 0 are not available (b):

Reaction Baes and Mesmer, 1976[84] Jolivet, 2000[85] NIST46[4] Crea et al., 2017[86]
MoO42– + H+ ⇌ HMoO4 3.89a 4.24 4.47 ± 0.02
MoO42– + 2 H+ ⇌ H2MoO4 7.50a 8.12 ± 0.03
HMoO4 + H+ ⇌ H2MoO4 4.0
Mo7O246– + H+ ⇌ HMo7O245– 4.4
HMo7O245– + H+ ⇌ H2Mo7O244– 3.5
H2Mo7O244– + H+ ⇌ H3Mo7O243– 2.5
7 MoO42-+ 8 H+ ⇌ Mo7O246– + 4 H2O 57.74a 52.99b 51.93 ± 0.04
7 MoO42– + 9 H+ ⇌ Mo7O23(OH)5– + 4 H2O 62.14a 58.90 ± 0.02
7 MoO42– + 10 H+ ⇌ Mo7O22(OH)24– + 4 H2O 65.68a 64.63 ± 0.05
7 MoO42– + 11 H+ ⇌ Mo7O21(OH)33– + 4 H2O 68.21a 68.68 ± 0.06
19 MoO42- + 34 H+ ⇌ Mo19O594– + 17 H2O 196.3a 196a
MoO3(s) + H2O ⇌ MoO42– + 2 H+ –12.06a

Neodymium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] NIST46[4] Neck et al., 2009[87] Brown and Ekberg, 2016[29]
Nd3+ + H2O ⇌ NdOH2+ + H+ –8.0 –8.0 –7.4 ± 0.4 –8.13 ± 0.05
Nd3+ + 2 H2O ⇌ Nd(OH)2+ + 2 H+ (–16.9) –15.7 ± 0.7
Nd3+ + 3 H2O ⇌ Nd(OH)3(aq) + 3 H+ (–26.5) –26.2 ± 0.5
Nd3+ + 4 H2O ⇌ Nd(OH)4 + 4 H+ (–37.1) –37.4 –40.7 ± 0.7
2 Nd3+ + 2 H2O ⇌ Nd2(OH)24+ + 2 H+ –13.86 –13.9 –15.56 ± 0.20
3 Nd3+ + 5 H2O ⇌ Nd3(OH)54+ + 5 H+ < –28.5 –34.2 ± 0.3
Nd(OH)3(s) + 3 H+ ⇌ Nd3+ + 3 H2O 18.6 17.2 ± 0.4 17.89 ± 0.09
Nd(OH)3(s) ⇌ Nd3+ + 3 OH –23.2 ± 0.9 –21.5 (act)

–23.1(inact)

Neptunium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[88] Grenthe et al, 2020[6]
Np3+ + H2O ⇌ NpOH2+ + H+ -7.3 ± 0.5 –6.8 ± 0.3

Neptunium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[89] NIST46[4] Brown and Ekberg, 2016[90] Grenthe et al, 2020[6]
Np4+ + H2O ⇌ NpOH3+ + H+ –1.49 –1.5 –1.31 ± 0.05 0.5 ± 0.2
Np4+ + 2 H2O ⇌ Np(OH)22+ + 2 H+ –3.7 ± 0.3 0.3 ± 0.3
Np4+ + 4 H2O ⇌ Np(OH)4 + 4 H+ –10.0 ± 0.9 –8 ± 1
Np4+ + 4 OH- ⇌ NpO2(am, hyd) + 2 H2O 52 54.9 ± 0.4 57.5 ± 0.3 56.7 ± 0.5

Neptunium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[89] Brown and Ekberg, 2016[91] Grenthe et al, 2020[6]
NpO2+ + + H2O ⇌ NpO2(OH) + H+ –8.85 –10.7 ± 0.5 –11.3 ± 0.7
NpO2+ + 2 H2O ⇌ NpO2(OH)2- + 2 H+ –22.8 ± 0.7 –23.6 ± 0.5
NpO2+ + H2O ⇌ NpO2(OH)(am, fresh) + H+ ≤ –4.7 –5.21 ± 0.05 –5.3 ± 0.2
NpO2+ + H2O ⇌ NpO2(OH)(am, aged) + H+ –4.53 ± 0.06 –4.7 ± 0.5

Neptunium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976[92]

NIST46[4] Brown and Ekberg,

2016[93]

Grenthe et

al, 2020[6]

NpO22+ + H2O ⇌ NpO2(OH)+ + H+ –5.15 –5.12 –5.1 ± 0.2 –5.1 ± 0.4
NpO22+ + 3 H2O ⇌ NpO2(OH)3- + 3 H+ –21 ± 1
NpO22+ + 4 H2O ⇌ NpO2(OH)42- + 4 H+ –32 ± 1
2 NpO22+ + 2 H2O ⇌ (NpO2)2(OH)22+ + 2 H+ –6.39 –6.39 –6.2 ± 0.2 –6.2 ± 0.2
3 NpO22+ + 5 H2O ⇌ (NpO2)3(OH)5+ + 5 H+ –17.49 –17.49 –17.0 ± 0.2 –17.1 ± 0.2
NpO22+ + 2 H2O ⇌ NpO3.H2O(cr) + 2 H+ ≥-6.6 –5.4 ± 0.4 –5.4 ± 0.4

Nickel(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Feitknecht and Schindler, 1963[71] Baes and Messmer, 1976[94] NIST46[4] Gamsjäger et al., 2005[95] Thoenen et al., 2014[96] Brown and Ekberg, 2016[97]
Ni2+ + H2O ⇌ NiOH+ + H+ –9.86 –9.9 –9.54 ± 0.14 –9.54 ± 0.14 –9.90 ± 0.03
Ni2+ + 2 H2O ⇌ Ni(OH)2 + 2 H+ –19 –19 < –18 –21.15 ± 0.0
Ni2+ + 3 H2O ⇌ Ni(OH)3 + 3 H+ –30 –30 –29.2 ± 1.7 –29.2 ± 1.7
Ni2+ + 4 H2O ⇌ Ni(OH)42– + 4 H+ < –44
2 Ni2+ + H2O ⇌ Ni2(OH)3+ + H+ –10.7 –10.6 ± 1.0 –10.6 ± 1.0 –10.6 ± 1.0
4 Ni2+ + 4 H2O ⇌ Ni4(OH)44+ + 4 H+ –27.74 –27.7 –27.52 ± 0.15 –27.52 ± 0.15 –27.9 ± 0.6
β-Ni(OH)2(s) + 2 H+ ⇌ Ni2+ + 2 H2O 10.8 11.02 ± 0.20 10.96 ± 0.20

11.75 ± 0.13 (microcr)

Ni(OH)2(s) ⇌ Ni2+ + 2 OH –17.2 (inactive) –17.2 –16.97± 0.20 (β)

–17.2 ± 1.3 (cr)

Ni(OH)2(s) + OH ⇌ Ni(OH)3 –4.2 (inactive)
NiO(cr) + 2 H+ ⇌ Ni2+ + H2O 12.38 ± 0.06 12.48 ± 0.15

Niobium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[72] Filella and May, 2020[98]
Nb(OH)5 + H+ ⇌ Nb(OH)4+ + H2O ~ –0.6 1.603
Nb(OH)5 + H2O ⇌ Nb(OH)6 + H+ ~ –4.8 –4.951
Nb6O198– + H+ ⇌ HNb6O197– 14.95
HNb6O197– + H+ ⇌ H2Nb6O196– 13.23
H2Nb6O196– + H+ ⇌ H3Nb6O195– 11.73
1/2 Nb2O5(act) + 5/2 H2O ⇌ Nb(OH)5 ~ –7.4
Nb(OH)5(am,s) ⇌ Nb(OH)5 –7.510
Nb2O5(s) + 5 H2O ⇌ 2 Nb(OH)5 –18.31

Osmium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution, I = 0.1 M and T = 298.15 K:

Reaction Galbács et al., 1983[99]
OsO2(OH)42– + H+ ⇌ HOsO2(OH)4 10.4
HOsO2(OH)4 + H+ ⇌ H2OsO2(OH)4 8.5

Osmium(VIII)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Galbács et al., 1983[99]
OsO2(OH)3(O-)aq + H+ ⇌ OsO2(OH)4aq 12.2a
OsO2(OH)2(O-)2aq + H+ ⇌ OsO2(OH)3(O-)aq 14.4b

(a) At I = 0.1 M (b) At I = 2.5 M

Palladium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969[100] Hummel et al., 2002[45] Kitamura and Yul, 2010[101] Brown and Ekberg, 2016[102]
Pd2+ + H2O ⇌ PdOH+ + H+ −0.96 −0.65 ± 0.64 −1.16 ± 0.30
Pd2+ + 2 H2O ⇌ Pd(OH)2 + 2 H+ −2.6 −4 ± 1 −3.11 ± 0.63 −3.07 ± 0.16
Pd2+ + 3 H2O ⇌ Pd(OH)3 + 3 H+ −15.5 ± 1 −14.20 ± 0.63
Pd(OH)2(am) + 2 H+ ⇌ Pd2+ + 2 H2O −3.3 ± 1 −3.4 ± 0.2

Plutonium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[103] NIST46[4] Brown and Ekberg, 2016[104] Grenthe et al, 2020[6]
Pu3+ + H2O ⇌ PuOH2+ + H+ –7.0 –6.9 ± 0.2 –6.9 ± 0.3
Pu3+ + 3 H2O ⇌ Pu(OH)3(cr) + 3 H+ –19.65 –15.8 ± 0.8 –15 ± 1

Plutonium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[105] NIST46[4] Brown and Ekberg, 2016[106] Grenthe et al, 2020[6]
Pu4+ + H2O ⇌ PuOH 3+ + H+ –0.5 –0.5 –0.7 ± 0.1 0.6 ± 0.2
Pu4+ + 2 H2O ⇌ Pu(OH)22+ + 2 H+ (–2.3) 0.6 ± 0.3
Pu4+ + 3 H2O ⇌ Pu(OH)3+ + 3 H+ (–5.3) –2.3 ± 0.4
Pu4+ + 4 H2O ⇌ Pu(OH)4 + 4 H+ –9.5 –12.5 ± 0.7 –8.5 ± 0.5
Pu4+ + 4 OH- ⇌ PuO2(am, hyd) + 2 H2O 49.5 47.9 ± 0.4 (0w)

53.8 ± 0.5 (1w)

58.3 ± 0.5

Plutonium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[107] NIST46[4] Brown and Ekberg, 2016[108] Grenthe et al, 2020[6]
PuO2+ + H2O ⇌ PuO2(OH) + H+ –1.49 –1.5 –1.31 ± 0.05 0.5 ± 0.2
PuO2+ + H2O ⇌ PuO2(OH)(am) + H+ –3.7 ± 0.3 0.3 ± 0.3

Plutonium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976[109]

NIST46[4] Brown and Ekberg,

2016[110]

Grenthe et

al, 2020[6]

PuO22+ + H2O ⇌ PuO2(OH)+ + H+ –5.6 –5.6 –5.36 ± 0.09 –5.5 ± 0.5
PuO22+ + 2 H2O ⇌ PuO2(OH)2 + 2 H+ –12.9 ± 0.2 –13 ± 1
PuO22+ + 3 H2O ⇌ PuO2(OH)3- + 3 H+ –24 ± 1
2 PuO22+ + 2 H2O ⇌ (PuO2)2(OH)22+ + 2 H+ –8.36 –8.36 –7.8 ± 0.5 –7 ± 1
3 PuO22+ + 5 H2O ⇌ (PuO2)3(OH)5+ + 5 H+ –21.65 –21.65
PuO22+ + 2 OH- ⇌ PuO2(OH)2(am, hyd) 22.8 ± 0.6

Potassium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[72] Nordstrom et al., 1990[17] Brown and Ekberg, 2016[111]
K+ + H2O ⇌ KOH + H+ –14.46 –14.46 –14.5 ± 0.4

Praseodymium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] NIST46[4] Brown and Ekberg, 2016[29]
Pr3+ + H2O ⇌ PrOH2+ + H+ –8.1 –8.30 ± 0.03
2 Pr3+ + 2 H2O ⇌ Pr2(OH)24+ + 2 H+ –16.31 ± 0.20
3 Pr3+ + 5 H2O ⇌ Pr3(OH)54+ + 5 H+ –35.0 ± 0.3
Pr(OH)3(s) + 3 H+ ⇌ Pr3+ + 3 H2O 19.5 18.57 ± 0.20
Pr(OH)3(s) ⇌ Pr3+ + 3 OH –22.3 ± 1.0

Radium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Nordstrom et al., 1990[17]
Ra2+ + H2O ⇌ RaOH+ + H+ –13.49

Rhodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969[112] Baes and Mesmer, 1976[113] Brown and Ekberg[114]
Rh3+ + H2O ⇌ RhOH2+ + H+ ‒3.43 ‒3.4 ‒3.09 ± 0.1
Rh(OH)3(c) + OH ⇌ Rh(OH)4 ‒3.9

Samarium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] NIST46[4] Brown and Ekberg[29]
Sm3+ + H2O ⇌ SmOH2+ + H+ –7.9 –7.9 –7.84 ± 0.11
2 Sm3+ + 2 H2O ⇌ Sm2(OH)24+ + 2 H+ –14.75 ± 0.20
3 Sm3+ + 5 H2O ⇌ Sm3(OH)54+ + 5 H+ –33.9 ± 0.3
Sm(OH)3(s) + 3H+ ⇌ Sm3+ + 3H2O 16.5 17.19 ± 0.30
Sm(OH)3(s) ⇌ Sm3+ + 3 OH- –23.9 ± 0.9 (am)

–25.9 (cr)

Scandium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[115] Brown and Ekberg, 2016[116]
Sc3+ + H2O ⇌ ScOH2+ + H+ –4.3 –4.16 ± 0.05
Sc3+ + 2 H2O ⇌ Sc(OH)2+ + 2 H+ –9.7 –9.71 ± 0.30
Sc3+ + 3 H2O ⇌ Sc(OH)3 + 3 H+ –16.1 –16.08 ± 0.30
Sc3+ + 4 H2O ⇌ Sc(OH)4+ 4 H+ –26 –26.7 ± 0.3
2 Sc3+ + 2 H2O ⇌ Sc2(OH)24+ + 2 H+ –6.0 –6.02 ± 0.10
3 Sc3+ + 5 H2O ⇌ Sc3(OH)54+ + 5 H+ –16.34 –16.33 ± 0.10
Sc(OH)3(s) + 3 H+ ⇌ Sc3+ + 3 H2O 9.17 ± 0.30
ScO1.5(s) + 3 H+ ⇌ Sc3+ + 1.5 H2O 5.53 ± 0.30
ScO(OH)(c) + 3 H+ ⇌ Sc3+ + 2 H2O 9.4
Sc(OH)3(c) + OH ⇌ Sc(OH)4 –3.5 ± 0.2

Selenium(–II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Olin et al., 2015[117] Thoenen et al., 2014[96]
H2Se(g) ⇌ H2Se(aq) –1.10 ± 0.01 –1.10 ± 0.01
H2Se ⇌ HSe + H+ –3.85 ± 0.05 –3.85 ± 0.05
HSe ⇌ Se2– + H+ –14.91 ± 0.20

Selenium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[118] Olin et al., 2005[117] Thoenen et al., 2014[96]
SeO32– + H+ ⇌ HSeO3 8.50 8.36 ± 0.23 8.36 ± 0.23
HSeO3 + H+ ⇌ H2SeO3 2.75 2.64 ± 0.14 2.64 ± 0.14

Selenium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[119] Olin et al., 2005[117] Thoenen et al., 2014[96]
SeO42‒ + H+ ⇌ HSeO4 1.360 1.75 ± 0.10 1.75 ± 0.10

Silicon

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[120] Thoenen et al., 2014[96]
Si(OH)4 ⇌ SiO(OH)3 + H+ –9.86 –9.81 ± 0.02
Si(OH)4 ⇌ SiO2(OH)22– + 2 H+ –22.92 –23.14 ± 0.09
4 Si(OH)4 ⇌ Si4O6(OH)64– + 2 H+ + 4 H2O –13.44
4 Si(OH)4 ⇌ Si4O8(OH)44– + 4 H+ + 4 H2O –35.80 –36.3 ± 0.2
SiO2(quartz) + 2 H2O ⇌ Si(OH)4 –4.0 –3.739 ± 0.087
SiO2(am) + 2 H2O ⇌ Si(OH)4 –2.714

Silver

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[121] Brown and Ekberg, 2016[122]
Ag+ + H2O ⇌ AgOH + H+ −12.0 −11.75 ± 0.14
Ag+ + 2 H2O ⇌ Ag(OH)2 + 2 H+ −24.0 −24.34 ± 0.14
0.5 Ag2O(am) + H+ ⇌ Ag+ + 0.5 H2O 6.29 6.27 ± 0.05

Sodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[72] Nordstrom et al., 1990[17] Brown and Ekberg, 2016[123]
Na+ + H2O ⇌ NaOH + H+ –14.18 –14.18 –14.4 ± 0.2

Strontium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[16] Nordstrom et al., 1990[17] Brown and Ekberg, 2016[124]
Sr2+ + H2O ⇌ SrOH+ + H+ –13.29 –13.29 –13.15 ± 0.05

Tantalum

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[125] Filella and May, 2019a[126]
Ta(OH)5 + H+ ⇌ Ta(OH)4+ + H2O ~1 0.7007
Ta(OH)5 + H2O ⇌ Ta(OH)6 + H+ ~ –9.6
Ta6O198– + H+ ⇌ HTa6O197– 16.35
HTa6O197– + H+ ⇌ H2Ta6O196– 14.00
1/2 Ta2O5(act) + 5/2 H2O ⇌ Ta(OH)5 ~ –5.2
Ta(OH)5(s) ⇌ Ta(OH)5 –5.295
Ta2O5(s) + 5 H2O ⇌ 2 Ta(OH)5 –20.00

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(-II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Filella and May, 2019a[127]
Te2‒ + H+ ⇌ HTe 11.81
HTe + H+ ⇌ H2Te 2.476

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[128] Filella and May, 2019a[127]
TeO32‒ + H+ ⇌ HTeO3 9.928
HTeO3 + H+ ⇌ H2TeO3 6.445
H2TeO3 ⇌ HTeO3 + H+ ‒2.68
H2TeO3 ⇌ TeO32‒ + 2 H+ ‒12.5
H2TeO3 + H+ ⇌ Te(OH)3+ 3.13 2.415
TeO2(s) + H2O ⇌ H2TeO3 ‒4.709

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[128] Filella and May, 2019a[127]
TeO2(OH)42‒ + H+ ⇌ TeO(OH)5 10.83
TeO(OH)5 + H+ ⇌ Te(OH)6 7.68 7.696
TeO2(OH)42‒ + 2 H+ ⇌ Te(OH)6 18.68
TeO3(OH)33‒ + 3 H+ ⇌ Te(OH)6 34.3
2 Te(OH)6 ⇌ Te2O(OH)11 + H+ ‒6.929

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Terbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] Brown and Ekberg, 2016[129]
Tb3+ + H2O ⇌ TbOH2+ + H+ −7.9 −7.60 ± 0.09
2 Tb3+ + 2 H2O ⇌ Tb2(OH)24+ + 2 H+ −13.9 ± 0.2
3 Tb3+ + 5 H2O ⇌ Tb3(OH)54+ + 5 H+ −31.7 ± 0.3
Tb(OH)3(s) + 3 H+ ⇌ Tb3+ + 3 H2O 16.5 16.33 ± 0.30

Thallium(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[130] Brown and Ekberg, 2016[131]
Tl+ + H2O ⇌ TlOH + H+ –13.21
Tl+ + OH ⇌ TlOH 0.64 ± 0.05
Tl+ + 2 OH ⇌ Tl(OH)2 –0.7 ± 0.7
½ Tl2O(s) + H+ ⇌ Tl+ + ½ H2O 13.55 ± 0.20

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Thallium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[130] Brown and Ekberg, 2016[131]
Tl3+ + H2O ⇌ TlOH2+ + H+ –0.62 –0.22 ± 0.19
Tl3+ + 2 H2O ⇌ Tl(OH)2+ + 2 H+ –1.57
Tl3+ + 3 H2O ⇌ Tl(OH)3 + 3 H+ –3.3
Tl3+ + 4 H2O ⇌ Tl(OH)4 + 4 H+ –15.0
½ Tl2O3(s) + 3 H+ ⇌ Tl3+ + ³⁄₂ H2O –3.90 –3.90 ± 0.10

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Thorium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976[132]

Rand et

al., 2008[133]

Thoenen et

al, 014[134]

Brown and Ekberg,

2016[135]

Th4+ + H2O ⇌ ThOH3+ + H+ –3.20 –2.5 ± 0.5 –2.5 ± 0.5 –2.5 ± 0.5
Th4+ + 2 H2O ⇌ Th(OH)22+ + 2 H+ –6.93 –6.2 ± 0.5 –6.2 ± 0.5 –6.2 ± 0.5
Th4+ + 3 H2O ⇌ Th(OH)3+ + 3 H+ < –11.7
Th4+ + 4 H2O ⇌ Th(OH)4 + 4 H+ –15.9 –17.4 ± 0.7 –17.4 ± 0.7 –17.4 ± 0.7
2Th4+ + 2 H2O ⇌ Th2(OH)26+ + 2 H+ –6.14 –5.9 ± 0.5 –5.9 ± 0.5 –5.9 ± 0.5
2Th4+ + 3 H2O ⇌ Th2(OH)35+ + 3 H+ –6.8 ± 0.2 –6.8 ± 0.2 –6.8 ± 0.2
4Th4+ + 8 H2O ⇌ Th4(OH)88+ + 8 H+ –21.1 –20.4 ± 0.4 –20.4 ± 0.4 –20.4 ± 0.4
4Th4+ + 12 H2O ⇌ Th4(OH)124+ + 12 H+ –26.6 ± 0.2 –26.6 ± 0.2 –26.6 ± 0.2
6Th4+ + 15 H2O(l) ⇌ Th6(OH)159+ + 15 H+ –36.76 –36.8 ± 1.5 –36.8 ± 1.5 –36.8 ± 1.5
6Th4+ + 14 H2O(l) ⇌ Th6(OH)1410+ + 14 H+ –36.8 ± 1.2 –36.8 ± 1.2 –36.8 ± 1.2
ThO2(c) + 4 H+ ⇌ Th4+ + 2 H2O 6.3
ThO2(am) + 4 H+ ⇌ Th4+ + 2 H2O 8.8 ± 1.0
ThO2(am,hyd,fresh) + 4 H+ ⇌ Th4+ + 2 H2O 9.3 ± 0.9
ThO2(am,hyd,aged) + 4 H+ ⇌ Th4+ + 2 H2O 8.5 ± 0.9
Th4+ + 4 OH- ⇌ ThO2(am,hyd,fresh) + 2 H2O 46.7 ± 0.9
Th4+ + 4 OH- ⇌ ThO2(am,hyd,aged) + 2 H2O 47.5 ± 0.9

Thulium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] Brown and Ekberg, 2016[136]
Tm3+ + H2O ⇌ TmOH2+ + H+ −7.7 −7.34 ± 0.09
2 Tm3+ + 2 H2O ⇌ Tm2(OH)24+ + 2 H+ −13.2 ± 0.2
3 Tm3+ + 5 H2O ⇌ Tm3(OH)54+ + 5 H+ −30.5 ± 0.3
Tm(OH)3(s) + 3 H+ ⇌ Tm3+ + 3 H2O 15.0 15.56 ± 0.40

Tin(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Feitknecht, 1963[71] Baes and Mesmer, 1976[137] Hummel et al., 2002[45] NIST46[4] Cigala et al, 2012[138] Gamsjäger et al, 2012[139] Brown and Ekberg, 2016[140]
Sn2+ + H2O ⇌ SnOH+ + H+ –3.40 –3.8 ± 0.2 –3.4 –3.52 ± 0.05 –3.53 ± 0.40 –3.53 ± 0.40
Sn2+ + 2 H2O ⇌ Sn(OH)2 + 2 H+ –7.06 –7.7 ± 0.2 –7.1 –6.26 ± 0.06 –7.68 ± 0.40 –7.68 ± 0.40
Sn2+ + 3 H2O ⇌ Sn(OH)3 + 3 H+ –16.61 –17.5 ± 0.2 –16.6 –16.97 ± 0.17 –17.00 ± 0.60 –17.56 ± 0.40
2 Sn2+ + 2 H2O ⇌ Sn2(OH)22+ + 2 H+ –4.77 –4.8 –4.79 ± 0.05
3 Sn2+ + 4 H2O ⇌ Sn3(OH)42+ + 4 H+ –6.88 –5.6 ± 1.6 –6.88 –5.88 ± 0.05 –5.60 ± 0.47 −5.60 ± 0.47
Sn(OH)2(s) ⇌ Sn2+ + 2 OH –25.8 –26.28 ± 0.08
SnO(s) + 2 H+ ⇌ Sn2+ + H2O 1.76 2.5± 0.5 1.60 ± 0.15
SnO(s) + H2O ⇌ Sn2+ + 2 OH –26.2
SnO(s) + H2O ⇌ Sn(OH)2 –5.3
SnO(s) + 2 H2O ⇌ Sn(OH)3 + H+ –0.9

Tin(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Hummel et al., 2002[45] Gamsjäger et al, 2012[139] Brown and Ekberg, 2016[140]
Sn4+ + 4 H2O ⇌ Sn(OH)4 + 4 H+ 7.53 ± 0.12
Sn4+ + 5 H2O ⇌ Sn(OH)5 + 5 H+ –1.07 ± 0.42
Sn4+ + 6 H2O ⇌ Sn(OH)62– + 6 H+ –1.07 ± 0.42
Sn(OH)4 + H2O ⇌ Sn(OH)5 + H+ –8.0 ± 0.3 –8.60 ± 0.40
Sn(OH)4 + 2 H2O ⇌ Sn(OH)62– + 2 H+ –18.4 ± 0.3 –18.67 ± 0.30
SnO2(cr) + 2 H2O ⇌ Sn(OH)4 –8.0 ± 0.2 –8.06 ± 0.11
SnO2(am) + 2 H2O ⇌ Sn(OH)4 –7.3 ± 0.3 –7.22 ± 0.08
SnO2(s) + 4 H+ ⇌ Sn4+ + 2 H2O –15.59 ± 0.04

Tungsten

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction NIST46[4]
WO42– + H+ ⇌ HWO4 3.6
WO42– + 2 H+ ⇌ H2WO4 5.8
6 WO42– + 7 H+ ⇌ HW6O215– + 3 H2O 63.83

Titanium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969[141] Baes and Mesmer, 1976[142] Brown and Ekberg, 2016[143]
Ti3+ + H2O ⇌ TiOH2+ + H+ –1.29 –2.2 –1.65 ± 0.11
2 Ti3+ + 2 H2O ⇌ Ti2(OH)24+ + 2 H+ –3.6 –2.64 ± 0.10

Titanium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[142] Brown and Ekberg, 2016[143]
Ti(OH)22+ + H2O ⇌ Ti(OH)3+ + H+ ⩽–2.3
Ti(OH)22+ + 2 H2O ⇌ Ti(OH)4 + 2 H+ –4.8
TiO2+ + H2O ⇌ TiOOH+ + H+ –2.48 ± 0.10
TiO2+ + 2 H2O ⇌ TiO(OH)2 + 2 H+ –5.49 ± 0.14
TiO2+ + 3 H2O ⇌ TiO(OH)3 + 3 H+ –17.4 ± 0.5
TiO(OH)2 + H2O ⇌ TiO(OH)3 + H+ –11.9 ±0.5
TiO2(c) +2 H2O ⇌ Ti(OH)4 ~ –4.8
TiO2(s) + H+ ⇌ TiOOH+ –6.06 ± 0.30
TiO2(s) + H2O ⇌ TiO(OH)2 –9.02 ± 0.02
TiO2 x H2O ⇌ Ti(OH)22+[OH]
TiO2(s) + 4 H+ ⇌ Ti4+ + 2 H2O –3.56 ± 0.10

Uranium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976[144]

Thoenen et

al., 2014[145]

Brown and Ekberg,

2016[146]

Grenthe et al.,

2020[6]

U4+ + H2O ⇌ UOH3+ + H+ –0.65 – 0.54 ± 0.06 –0.58 ± 0.08 – 0.54 ± 0.06
U4+ + 2 H2O ⇌ U(OH)22+ + 2 H+ (–2.6) –1.1 ± 1.0 –1.4 ± 0.2 –1.9 ± 0.2
U4+ + 3 H2O ⇌ U(OH)3+ + 3 H+ (–5.8) –4.7 ± 1.0 –5.1 ± 0.3 –5.2 ± 0.4
U4+ + 4 H2O ⇌ U(OH)4 + 4 H+ (–10.3) –10.0 ± 1.4 –10.4 ± 0.5 –10.0 ± 1.4
U4+ + 5 H2O ⇌ U(OH)5- + 5 H+ –16.0
UO2(am, hyd) + 4 H+ ⇌ U4+ + 2 H2O 1.5 ± 1.0
UO2(am,hyd) + 2 H2O ⇌ U4+ + 4 OH –54.500 ± 1.000 –54.500 ± 1.000
UO2(c) + 4 H+ ⇌ U4+ + 2 H2O –1.8
UO2(c) + 2 H2O ⇌ U4+ + 4 OH –60.860 ± 1.000

Uranium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976[147]

Grenthe et

al., 1992[148]

NIST46[4] Brown and Ekberg,

2016[149]

Grenthe et al.,

2020[6]

UO22+ + H2O ⇌ UO2(OH)+ + H+ –5.8 –5.2 ± 0.3 –5.9 ± 0.1 –5.13 ± 0.04 –5.25 ± 0.24
UO22+ + 2 H2O ⇌ UO2(OH)2 + 2 H+ ≤-10.3 –12.15 ± 0.20 –12.15 ± 0.07
UO22+ + 3 H2O ⇌ UO2(OH)3 + 3 H+ –19.2 ± 0.4 –20.25 ± 0.42 –20.25 ± 0.42
UO22+ + 4 H2O ⇌ UO2(OH)42– + 4 H+ –33 ± 2 –32.40 ± 0.68 –32.40 ± 0.68
2 UO22+ + 2 H2O ⇌ (UO2)2(OH)22+ + 2 H+ –5.62 –5.62 ± 0.04 –5.58 ± 0.04 –5.68 ± 0.05 –5.62 ± 0.08
3 UO22+ + 5 H2O ⇌ (UO2)3(OH)5+ + 5 H+ –15.63 –15.55 ± 0.12 –15.6 –15.75 ± 0.12 –15.55 ± 0.12
3 UO22+ + 4 H2O ⇌ (UO2)3(OH)42+ + 4 H+ (–11.75) –11.9 ± 0.3 –11.78 ± 0.05 –11.9 ± 0.3
3 UO22+ + 7 H2O ⇌ (UO2)3(OH)7 + 7 H+ –31 ± 2.0 –32.2 ± 0.8 –32.2 ± 0.8
4 UO22+ + 7 H2O ⇌ (UO2)4(OH)7+ + 7 H+ –21.9 ± 1.0 –22.1 ± 0.2 –21.9 ± 1.0
2 UO22+ + H2O ⇌ (UO2)2(OH)3+ + H+ –2.7 ± 1.0 –2.7 ± 1.0
UO2(OH)2(s) + 2H+ ⇌ UO22+ + 2 H2O 5.6 6.0 4.81 ± 0.20
UO3·2H2O(cr) + 2H+ ⇌ UO22+ + 3 H2O 5.350 ± 0.130

Vanadium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[79]
VO2+ + H2O ⇌ VO(OH)+ + H+ –5.30 ± 0.13
2 VO2+ + 2 H2O ⇌ (VO)2(OH)22+ + 2 H+ –6.71 ± 0.10

Vanadium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[150] Brown and Ekberg, 2016[151]
VO2+ + 2 H2O ⇌ VO(OH)3 + H+ –3.3
VO2+ + 2 H2O ⇌ VO2(OH)2 + 2 H+ –7.3 –7.18 ± 0.12
10 VO2+ + 8 H2O ⇌ V10O26(OH)24– + 14 H+ –10.7
VO2(OH)2 ⇌ VO3(OH)2– + H+ –8.55
2 VO2(OH)2 ⇌ V2O6(OH)23– + H+ + H2O –6.53
VO3(OH)2– ⇌ VO43– + H+ –14.26
2 VO3(OH)2– ⇌ V2O74– + H2O 0.56
3 VO3(OH)2– + 3 H+⇌ V3O93– + 3 H2O 31.81
V10O26(OH)24– ⇌ V10O27(OH)5– + 3 H+ –3.6
V10O27(OH)5– ⇌ V10O286– + H+ –6.15
VO2+ + H2O ⇌ VO2OH + H+ –3.25 ± 0.1
VO2+ + 3 H2O ⇌ VO2(OH)32- + 3 H+ –15.74 ± 0.19
VO2+ + 4 H2O ⇌ VO2(OH)43- + 4 H+ –30.03 ± 0.24
2 VO2+ + 4 H2O ⇌ (VO2)2(OH)42- + 4 H+ –11.66 ± 0.53
2 VO2+ + 5 H2O ⇌ (VO2)2(OH)53- + 5 H+ –20.91 ± 0.22
2 VO2+ + 6 H2O ⇌ (VO2)2(OH)64- + 6 H+ –32.43 ± 0.30
4 VO2+ + 8 H2O ⇌ (VO2)4(OH)84- + 8 H+ –20.78 ± 0.33
4 VO2+ + 9 H2O ⇌ (VO2)4(OH)95- + 9 H+ –31.85 ± 0.26
4 VO2+ + 10 H2O ⇌ (VO2)4(OH)106- + 10 H+ –45.85 ± 0.26
5 VO2+ + 10 H2O ⇌ (VO2)5(OH)105- + 10 H+ –27.02 ± 0.34
10 VO2+ + 14 H2O ⇌ (VO2)10(OH)144- + 14 H+ –10.5 ± 0.3
10 VO2+ + 15 H2O ⇌ (VO2)10(OH)155- + 15 H+ –15.73 ± 0.33
10 VO2+ + 16 H2O ⇌ (VO2)10(OH)166- + 16 H+ –23.90 ± 0.35
½ V2O5(c) + H+ ⇌ VO2+ + ½ H2O –0.66
V2O5(s) + 2 H+ ⇌ 2 VO2+ + H2O –0.64 ± 0.09

Ytterbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] Brown and Ekberg, 2016[152]
Yb3+ + H2O ⇌ YbOH2+ + H+ −7.7 −7.31 ± 0.18
Yb3+ + 2 H2O ⇌ Yb(OH)2+ + 2 H+ (−15.8)
Yb3+ + 3 H2O ⇌ Yb(OH)3 + 3 H+ (−24.1)
Yb3+ + 4 H2O ⇌ Yb(OH)4 + 4 H+ −32.7
2 Yb3+ + 2 H2O ⇌ Yb2(OH)24+ + 2 H+ −13.76 ± 0.20
3 Yb3+ + 5 H2O ⇌ Yb3(OH)54+ + 5 H+ −30.6 ± 0.3
Yb(OH)3(s) + 3 H+ ⇌ Yb3+ + 3 H2O 14.7 15.35 ± 0.20

Yttrium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[46] Brown and Ekberg, 2016[66]
Y3+ + H2O ⇌ YOH2+ + H+ –7.7 –7.77 ± 0.06
Y3+ + 2 H2O ⇌ Y(OH)2+ + 2 H+ (–16.4) [Estimation]
Y3+ + 3 H2O ⇌ Y(OH)3 + 3 H+ (–26.0) [Estimation]
Y3+ + 4 H2O ⇌ Y(OH)4-+ 4 H+ –36.5
2 Y3+ + 2 H2O ⇌ Y2(OH)24+ + 2 H+ –14.23 –14.1 ± 0.2
3 Y3+ + 5 H2O ⇌ Y3(OH)54+ + 5 H+ –31.6 –32.7 ± 0.3
Y(OH)3(s) + 3 H+ ⇌ Y3+ + 3 H2O 17.5 17.32 ± 0.30

Zinc

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[153] Powell and Brown, 2013[154] Brown and Ekberg, 2016[155]
Zn2+ + H2O ⇌ ZnOH+ + H+ −8.96 −8.96 ± 0.05 −8.94 ± 0.06
Zn2+ + 2 H2O ⇌ Zn(OH)2 + 2 H+ −16.9 –17.82 ± 0.08 −17.89 ± 0.15
Zn2+ + 3 H2O ⇌ Zn(OH)3- + 3 H+ −28.4 –28.05 ± 0.05 −27.98 ± 0.10
Zn2+ + 4 H2O ⇌ Zn(OH)42- + 4 H+ −41.2 –40.41 ± 0.12 −40.35 ± 0.22
2 Zn2+ + H2O ⇌ Zn2OH3+ + H+ −9.0 –7.9 ± 0.2 −7.89 ± 0.31
2 Zn2+ + 6 H2O ⇌ Zn2(OH)62- + 6 H+ −57.8
ZnO(s) + 2 H+ ⇌ Zn2+ + H2O 11.14 11.12 ± 0.05 11.11 ± 0.10
ε-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.38 ± 0.20 11.38± 0.20
β1-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.72 ± 0.04
β2-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.76 ± 0.04
γ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.70 ± 0.04
δ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.81 ± 0.04

Zirconium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[55] Thoenen et al., 2014[96] Brown and Ekberg, 2016[156]
Zr4+ + H2O ⇌ ZrOH3+ + H+ 0.32 0.32 ± 0.22 0.12 ± 0.12
Zr4+ + 2 H2O ⇌ Zr(OH)22+ + 2 H+ (−1.7)* 0.98 ± 1.06* −0.18 ± 0.17*
Zr4+ + 3 H2O ⇌ Zr(OH)3+ + 3 H+ (−5.1)
Zr4+ + 4 H2O ⇌ Zr(OH)4 + 4 H+ –9.7* –2.19 ± 0.70* −4.53 ± 0.37*
Zr4+ + 5 H2O ⇌ Zr(OH)5 + 5 H+ –16.0
Zr4+ + 6 H2O ⇌ Zr(OH)62– + 6 H+ –29± 0.70 –30.5 ± 0.3
3 Zr4+ + 4 H2O ⇌ Zr3(OH)48+ + 4 H+ –0.6 0.4 ± 0.3 0.90 ± 0.18
3 Zr4+ + 5 H2O ⇌ Zr3(OH)57+ + 5 H+ 3.70
3 Zr4+ + 9 H2O ⇌ Zr3(OH)93+ + 9 H+ 12.19 ± 0.20 12.19 ± 0.20
4 Zr4+ + 8 H2O ⇌ Zr4(OH)88+ + 8 H+ 6.0 6.52 ± 0.05 6.52 ± 0.05
4 Zr4+ + 15 H2O ⇌ Zr4(OH)15+ + 15 H+ 12.58± 0.24
4 Zr4+ + 16 H2O ⇌ Zr4(OH)16 + 16 H+ 8.39± 0.80
ZrO2(s) + 4 H+ ⇌ Zr4+ + 2 H2O –1.9* –5.37 ± 0.42*
ZrO2(s, baddeleyite) + 4 H+ ⇌ Zr4+ + 2 H2O –7 ± 1.6
ZrO2(am) + 4 H+ ⇌ Zr4+ + 2 H2O –3.24± 0.10 –2.97 ± 0.18

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.

References

  1. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 121. 
  2. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 757–797. 
  3. Hummel, W.; Thoenen, T. (2023). Technical Report 21-03. The PSI Chemical Thermodynamic Database 2020. Wettingen: NAGRA. pp. 252-259. 
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 NIST46. NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0.. https://www.nist.gov/srd/nist46. 
  5. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 407–414. 
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 Grenthe, I.; Gaona, X.; Plyasunov, A.V.; Rao, L.; Runde, W.H.; Grambow, B.; Konings, R.J.M.; Smith, A.L. et al. (2020). Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Paris: OECD Publishing. https://www.oecd-nea.org/upload/docs/application/pdf/2020-10/7500_second_update_of_u_np_pu_am_and_tc_web.pdf. 
  7. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 414. 
  8. 8.0 8.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 375. 
  9. 9.0 9.1 9.2 Lothenbach, B.; Ochs, M.; Wanner, H.; Yui, M. (1999). Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. TN8400 99-011. Japan Nuclear Cycle Development Institute (JNC). 
  10. 10.0 10.1 10.2 Kitamura, A.; Fujiwara, K.; Doi, R.; Yoshida, Y.; Mihara, M.; Terashima, M.; Yui, M. (2010). JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level Radioactive and TRU-Wastes. Report JAEA-Data/Code 2009-024. Japan Atomic Energy Agency. 
  11. Filella, M.; May, P.M. (2003). "Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters.". Geochim. Cosmochim. Acta 67: 4013–4031. doi:10.1016/S0016-7037(03)00095-4. 
  12. 12.0 12.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 370. 
  13. 13.0 13.1 Nordstrom, D.K.; Archer, D. (2003). Welch, AH. ed. Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water.. Amsterdam: Kluwer Academic Publishers. pp. 1‒25. doi:10.1007/0-306-47956-7_1. 
  14. 14.0 14.1 Nordstrom, D.K.; Majzlan, J.; Königsberger, E. (2014). "Thermodynamic properties for As minerals & aqueous species". Reviews in Mineralogy & Geochemistry 79: 217‒255. doi:10.2138/rmg.2014.79.4. 
  15. Khodakovsky, I.L.; Ryzhenko, B.N.; Naumov, G.B. (1968). "Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution)". Geokhimiya 12: 1486‒ 1503, 1968. 
  16. 16.0 16.1 16.2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 103. 
  17. 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 Nordstrom, D.K.; Plummer, L.N.; Langmuir, D.; Busenberg, E.; May, H.M.; Jones, B.F.; Parkhurst, D.L. (1990). Melchior, D.C.. ed. Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II. Washington, DC: ACS. pp. 398–446. 
  18. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. New York: Wiley. pp. 213–217. 
  19. 19.0 19.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 419–422. 
  20. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 95. 
  21. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 383. 
  22. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 874–884. 
  23. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 111. 
  24. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 301. 
  25. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2011). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 83: 1163–1214. doi:10.1351/PAC-REP-10-08-09. 
  26. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 730–738. 
  27. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 195–210. 
  28. 28.00 28.01 28.02 28.03 28.04 28.05 28.06 28.07 28.08 28.09 28.10 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 137. 
  29. 29.0 29.1 29.2 29.3 29.4 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145. 
  30. 30.0 30.1 30.2 Ball, J.W.; Nordstrom, D.K. (1998). "Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides and hydroxides.". J. Chem. Eng. Data 43: 895–918. https://doi.org/10.1021/je980080a. 
  31. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 220. 
  32. Rai, D.; Sass, B.M.; Moore, D.A. (1987). "Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide". Inorg. Chem. 26: 345–349. https://doi.org/10.1021/ic00250a002. 
  33. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 541–555. 
  34. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 216. 
  35. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 241. 
  36. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 620–628. 
  37. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 628−632. 
  38. 38.0 38.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 650–702. 
  39. Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 274. 
  40. Plyasunova, N.V.; Wang, M.; Zhang, Y.; Muhammed, M. (1997). "Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu2+ at 298.15 K". Hydrometalurgy 45: 37–51. https://doi.org/10.1016/S0304-386X(96)00073-4. 
  41. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanne, H.. "Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+ + OH, Cl, CO32–, SO42–, and PO43– systems.". Pure Appl. Chem. 79: 895–950. http://dx.doi.org/10.1002/chin.200740221. 
  42. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 415−420. 
  43. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 290−292. 
  44. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 295−297. 
  45. 45.0 45.1 45.2 45.3 45.4 45.5 Hummel, W.; Berner, U.; Curti, E.; Pearson, F.J.; Thoenen, T. (2002). TECHNICAL REPORT 02-16. Nagra/ PSI Chemical Thermodynamic Data Base 01/01.. 
  46. 46.0 46.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 137. 
  47. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 284–287. 
  48. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 319. 
  49. Smith, R.M.; Martell, A.E.; Motekaitis, R.J. (2003). NIST Critically Selected Stability Constants of Metal Complexes Database, Version 7.0, NIST Standard Reference Database 46. Gaithersburg, MD, USA: National Institute of Standards, U.S. Dept. of Commerce. 
  50. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 797–812. 
  51. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 349. 
  52. Wood, S.A.; Samson, I.M. (2006). "The aqueous geochemistry of gallium, germanium, indium and scandium". Ore Geol. Rev. 28. https://doi.org/10.1016/j.oregeorev.2003.06.002. 
  53. Filella, M.; May, P.M. (2023). "The aqueous solution chemistry of germanium under conditions of environmental and biological interest: inorganic ligands". Applied Geochemistry 155: 105631. https://doi.org/10.1016/j.apgeochem.2023.105631. 
  54. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 279–285. 
  55. 55.0 55.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 158. 
  56. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 460–463. 
  57. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 293−295. 
  58. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. pp. 327. 
  59. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 812–817. 
  60. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 736‒739. 
  61. 61.0 61.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 235. 
  62. 62.0 62.1 Lemire, R.J.; Berner, U.; Musikas, C.; Palmer, D.A.; Taylor, P.; Tochiyama, O. (2013). Chemical Thermodynamics of Iron, Part 1. Chemical Thermodynamics. 13a. OECD Nuclear Energy Agency (NEA). 
  63. Brown, P.I.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 573−585. 
  64. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 585–620. 
  65. Baer, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 137. 
  66. 66.0 66.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145. 
  67. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 365. 
  68. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.K.; Sjöberg, S.; Wanner, H. (2009). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 81: 2425–2476. doi:10.1351/PAC-REP-09-03-05. 
  69. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145. 
  70. Cataldo, S.; Lando, G.; Milea, D.; Orecchio, S.; Pettignano, A.; Sammartano, S. (2018). ", A novel thermodynamic approach for the complexation study of toxic metal cations by a landfill leachate". New J. Chem. 42: 7640–7648. doi:10.1039/C7NJ04456A. 
  71. 71.0 71.1 71.2 Feitknecht, W.; Schindler, P. (1963). "Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution". Pure and Applied Chemistry 6 (2): 125–206. doi:10.1351/pac196306020125. https://doi.org/10.1515/iupac.6.0001. 
  72. 72.0 72.1 72.2 72.3 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 86. 
  73. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 136–141. 
  74. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 89. 
  75. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 178–195. 
  76. Perrin, D.D (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. pp. 181. 
  77. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 226. 
  78. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 557−561. 
  79. 79.0 79.1 79.2 Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 568–570. 
  80. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. pp. 302. 
  81. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 741-755. 
  82. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 312. 
  83. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanner, H. (2005). "Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg2+– Cl, OH, CO32−, SO42−, and PO43− aqueous systems (IUPAC technical report)". Pure Appl. Chem. 77: 739–80. doi:10.1515/iupac.77.0018. 
  84. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 256. 
  85. Jolivet, J.-P. (2000). "Metal Oxide Chemistry and Synthesis". Solution to Solid State. Wiley. 
  86. Crea, F.; De Stefano, C.; Irto, A.; Milea, D.; Pettignano, A.; Sammartano, S. (2017). "Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations". Journal of Molecular Liquids 229: 15–26. doi:10.1016/j.molliq.2016.12.041. 
  87. Neck, V.; Altmaier, M.; Rabung, T.; Lützenkirchen, J.; Fanghänel, T. (2009). "Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes". Pure Appl. Chem. 81: 1555–1568. doi:10.1351/PAC-CON-08-09-05. 
  88. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 380. 
  89. 89.0 89.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 183. 
  90. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 380–384. 
  91. Brownº, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 384–394. 
  92. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 183–184. 
  93. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 394–396. 
  94. Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 246. 
  95. Gamsjäger, H.; Bugajski, J.; Gajda, T.; Lemire, R.J.; Prei, W. (2005). Chemical Thermodynamics of Nickel, Chemical Thermodynamics, Volume 6. Paris: OECD. 
  96. 96.0 96.1 96.2 96.3 96.4 96.5 Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen PSI, Switzerland: Paul Scherrer Institut. pp. 205–212. 
  97. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 632–649. 
  98. Filella, M.; May, P.M. (2020). "The aqueous solution thermodynamics of niobium under conditions of environmental and biological interest.". Applied Geochemistry 122. doi:10.1016/j.apgeochem.2020.104729. 
  99. 99.0 99.1 Galbács, Z.M.; Zsednai, Á.; Csányi, L.J. (1983). "The acidic behaviour of osmium(VIII) and osmium(VI". Transition Met. Chem. 8: 328–332. doi:10.1007/BF00618563. 
  100. Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. pp. 186. 
  101. Kitamura, A.; Yui, M. (2010). "Reevaluation of thermodynamic data for hydroxide and hydrolysis species of palladium(II) using the Brønsted-Guggenheim Scatchard model". J. Nuclear Sci. Technol. 47: 760−770. doi:10.1080/18811248.2010.9711652. 
  102. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 723−725. 
  103. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 186–187. 
  104. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 396–397. 
  105. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 187–189. 
  106. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 397–401. 
  107. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 189–190. 
  108. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 401–403. 
  109. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 190–191. 
  110. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 403–405. 
  111. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 148–150. 
  112. Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. pp. 191. 
  113. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 263. 
  114. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 722. 
  115. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 128. 
  116. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 225–236. 
  117. 117.0 117.1 117.2 Olin, Å; Noläng, B.; Öhman, L.-O.; Osadchii, E; Rosén, E. (2005). Chemical Thermodynamics of Selenium. OECD Pub.. 
  118. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 386. 
  119. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 387. 
  120. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 342. 
  121. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 278. 
  122. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 725−730. 
  123. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 142–147. 
  124. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 210–213. 
  125. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 252. 
  126. Filella, M.; May, P.M. (2019). "The aqueous solution thermodynamics of tantalum under conditions of environmental and biological interest". Applied Geochemistry 109: 104402. doi:10.1016/j.apgeochem.2019.104402. 
  127. 127.0 127.1 127.2 Filella, M.; May, P.M. (2019). "The aqueous chemistry of tellurium: critically-selected equilibrium constants for the low-molecular-weight inorganic species". Environ. Chem. 16: 289–295. doi:10.1071/EN19017. 
  128. 128.0 128.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 395. 
  129. Brwon, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 287−290. 
  130. 130.0 130.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 335. 
  131. 131.0 131.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 817–826. 
  132. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 168. 
  133. Rand, M.; Fuger, J.; Grenthe, I.; Neck, V.; Rai, D. (2008). Chemical Thermodynamics of Thorium. OECD Publishing. https://www.oecd-nea.org/science/pubs/2007/6254-chemical-thermodynamics-vol.11.pdf. 
  134. Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen: Paul Scherrer Institut PSI. pp. 259–263. 
  135. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 462–498. 
  136. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 297−300. 
  137. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 357. 
  138. Cigala, R.M.; Crea, F.; De Stefan, C.; Lando, G.; Milea, D.; Sammartano, S. (2012). "The inorganic speciation of tin(II) in aqueous solution". Geochim. Cosmochim. Acta 87: 1–20. doi:10.1016/j.gca.2012.03.029. 
  139. 139.0 139.1 Gamsjäger, H.; Gajda, T.; Sangster, J.; Saxena, S.K.; Voigt, W. (2012). Chemical Thermodynamics of Tin. Chemical Thermodynamics Volume 12. Paris: OECD. 
  140. 140.0 140.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 836–842. 
  141. Perrin, D.D. (1969). Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. pp. 208. 
  142. 142.0 142.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 151. 
  143. 143.0 143.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 433–442. 
  144. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 181. 
  145. Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen: Paul Scherrer Institut PSI. https://www.psi.ch/sites/default/files/import/les/DatabaseEN/PSI-Bericht%252014-04_final_druckerei.pdf. 
  146. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley (published 336–349). 
  147. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. pp. 182. 
  148. Grenthe, I.; Fuger, J.; Konings, R.J.M.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung, C.; Wanner, H. (1992). Chemical Thermodynamics of Uranium, Chemical Vol 1,. Paris: OECD Publishing. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/uranium.pdf. 
  149. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 350–379. 
  150. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 209. 
  151. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 517–541. 
  152. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 300−303. 
  153. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 293. 
  154. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Helfer, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2013). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)*". Pure and Applied Chemistry 85: 2249–2311. http://dx.doi.org/10.1351/PAC-REP-13-06-03. 
  155. Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 676−700. 
  156. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 442–460.