Chemistry:Triiron ditin intermetallic

From HandWiki
Revision as of 04:01, 6 February 2024 by S.Timg (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Triiron ditin intermetallic
Identifiers
3D model (JSmol)
Structure[1]
Kagome
R3m
a = 5.338 Å, c = 19.789 Å
hexagonal
Related compounds
Related compounds
Fe3Sn
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

The compound with empirical formula Fe3Sn2 is the first known kagome magnet. It is an intermetallic compound composed of iron (Fe) and tin (Sn), with alternating planes of Fe3Sn and Sn.[1]

Preparation

The iron-tin intermetallic forms at around 750 °C (1,380 °F) and naturally assumes a kagome structure.[2] Quenching in an ice bath then cools the material to room temperature without disrupting the atomic structure.[3]

Electronic structure

The compound's band structure exhibits a double Dirac cone, enabling Dirac fermions. A 30 meV gap separates the cones, which indicates the quantum Hall effect and massive Dirac fermions.[4] Close measurement of the Fermi surface via the de Haas-van Alphen effect suggests that the massive fermions also exhibit Kane-Mele-type spin-orbit coupling.[5]

Fe3Sn2 can also host magnetic skyrmions, but these typically require high magnetic fields to nucleate. For samples with a small (but nonzero) thickness gradient, only a small-amplitude (5-10 mT), direction-variant magnetic field suffices to nucleate the quasiparticles.[6]

References

  1. 1.0 1.1 Ye, Linda; Kang Mingu; Liu Junwei; von Cube, Felix; Wicker, Christina R.; Suzuki Takehito; Jozwiak, Chris; Bostwick, Aaron et al. (19 March 2018). "Massive Dirac fermions in a ferromagnetic kagome metal" (in en). Nature 555 (7698): 638–642. doi:10.1038/nature25987. ISSN 1476-4687. PMID 29555992. Bibcode2018Natur.555..638Y. https://www.nature.com/articles/nature25987. 
  2. Aristos Georgiou (March 20, 2018). "Kagome metal: new exotic quantum material developed by scientists". Newsweek. http://www.newsweek.com/kagome-metal-new-exotic-quantum-material-discovered-scientists-853426. 
  3. Chu, Jennifer (March 19, 2018). "Physicists discover new quantum electronic material". MIT News (Massachusetts Institute of Technology). https://news.mit.edu/2018/physicists-discover-new-quantum-electronic-material-0319. 
  4. "The Electronic Structure of a 'Kagome' Material" (in en-US). Lawrence Berkeley National Lab. 2018-06-15. https://als.lbl.gov/the-electronic-structure-of-a-kagome-material/. 
  5. Ye, Linda; Chan Mun K.; McDonald, Ross D.; Graf, David; Kang Mingu; Liu Junwei; Suzuki Takehito; Comin, Riccardo et al. (2019-10-25). "De Haas-van Alphen effect of correlated Dirac states in kagome metal Fe3Sn2" (in en). Nature Communications 10 (1): 4870. doi:10.1038/s41467-019-12822-1. ISSN 2041-1723. PMID 31653866. Bibcode2019NatCo..10.4870Y. 
  6. Wang Binbin; Wu Po-kuan; Bagués Salguero, Núria; Zheng Qiang; Yan Jiaqiang; Randeria, Mohit; McComb, David W. (2021-08-24). "Stimulated Nucleation of Skyrmions in a Centrosymmetric Magnet". ACS Nano 15 (8): 13495–13503. doi:10.1021/acsnano.1c04053. ISSN 1936-0851. PMID 34374281.