Physics:Kagome metal

From HandWiki

In solid-state physics, the kagome metal or kagome magnet is a type of ferromagnetic quantum material. The atomic lattice in a kagome magnet has layered overlapping triangles and large hexagonal voids, akin to the kagome pattern in traditional Japanese basket-weaving.[1][2][3][4] This geometry induces a flat electronic band structure with Dirac crossings, in which the low-energy electron dynamics correlate strongly.[5] Electrons in a kagome metal experience a "three-dimensional cousin of the quantum Hall effect": magnetic effects require electrons to flow around the kagome triangles, akin to superconductivity.[5] This phenomenon occurs in many materials at low temperatures and high external field, but, unlike superconductivity, materials are known in which the effect remains under standard conditions.[5][6]

The first room-temperature, vanishing-external-field kagome magnet discovered was the intermetallic Fe
3
Sn
2
, as shown in 2011.[7] Many others have since been found. Kagome magnets occur in a variety of crystal and magnetic structures, generally featuring a 3d-transition-metal kagome lattice with in-plane period ~5.5 Å. Examples include antiferromagnet Mn
3
Sn
, paramagnet CoSn, ferrimagnet TbMn
6
Sn
6
, hard ferromagnet (and Weyl semimetal) Co
3
Sn
2
S
2
, and soft ferromagnet Fe
3
Sn
2
. Until 2019, all known kagome materials contained the heavy element tin, which has a strong spin–orbit coupling, but potential kagome materials under study ((As of 2019)) included magnetically doped Weyl-semimetal Co
2
MnGa
,[8] and the class AV
3
Sb
5
(A = Cs, Rb, K).[9] Although most research on kagome magnets has been performed on Fe3Sn2, it has since been discovered that FeSn in fact exhibits a structure much closer to the ideal kagome lattice.[10]

A kagome lattice harbors massive Dirac fermions, Berry curvature, band gaps, and spin–orbit activity, all of which are conducive to the Hall Effect and zero-energy-loss electric currents.[6][11][12] These behaviors are promising for the development of technologies in quantum computing, spin superconductors, and low power electronics.[5][6]  CsV
3
Sb
5
in particular exhibits numerous exotic properties, including superconductivity,[13] topological states, and more.[vague][14][15][16][17] Magnetic skyrmionic bubbles have been found in Kagome metals over a wide temperature range. For example, they were observed in Fe
3
Sn
2
at ~200-600 K using LTEM but with high critical field ~0.8 T.[18]

See also

References

  1. Yin Jia-Xin (2018). "Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet". Nature 562 (7725): 91–95. doi:10.1038/s41586-018-0502-7. PMID 30209398. Bibcode2018Natur.562...91Y. 
  2. Li Yangmu (2019). "Magnetic-Field Control of Topological Electronic Response near Room Temperature in Correlated Kagome Magnets". Physical Review Letters 123 (19): 196604. doi:10.1103/PhysRevLett.123.196604. PMID 31765205. Bibcode2019PhRvL.123s6604L. 
  3. Khadka, Durga (2020). "Anomalous Hall and Nernst effects in epitaxial films of topological kagome magnet Fe3Sn2". Physical Review Materials 4 (8): 084203. doi:10.1103/PhysRevMaterials.4.084203. Bibcode2020PhRvM...4h4203K. 
  4. Yin Jia-Xin (2021). "Probing topological quantum matter with scanning tunnelling microscopy". Nature Reviews Physics 3 (4): 249–263. doi:10.1038/s42254-021-00293-7. Bibcode2021NatRP...3..249Y. 
  5. 5.0 5.1 5.2 5.3 Jennifer Chu (March 19, 2018), "Physicists discover new quantum electronic material", MIT News (Massachusetts Institute of Technology), https://news.mit.edu/2018/physicists-discover-new-quantum-electronic-material-0319 
  6. 6.0 6.1 6.2 "The Electronic Structure of a "Kagome" Material" (in en-US). 2018-06-15. https://als.lbl.gov/the-electronic-structure-of-a-kagome-material/. 
  7. Kida T (2011). "The giant anomalous Hall effect in the ferromagnet Fe3Sn2—a frustrated kagome metal". J. Phys.: Condens. Matter 23 (11): 112205. doi:10.1088/0953-8984/23/11/112205. PMID 21358031. Bibcode2011JPCM...23k2205K. 
  8. "The best of two worlds: Magnetism and Weyl semimetals" (in en). September 2019. https://phys.org/news/2019-09-worlds-magnetism-weyl-semimetals.html. 
  9. Ortiz, Brenden R.; Gomes, Lídia C.; Morey, Jennifer R.; Winiarski, Michal; Bordelon, Mitchell; Mangum, John S.; Oswald, Iain W. H.; Rodriguez-Rivera, Jose A. et al. (2019-09-16). "New kagome prototype materials: discovery of KV3Sb5 and CsV3Sb5". Physical Review Materials 3 (9): 094407. doi:10.1103/PhysRevMaterials.3.094407. 
  10. "MIT researchers realize "ideal" kagome metal electronic structure". 12 December 2019. http://news.mit.edu/2019/mit-researchers-realize-ideal-kagome-metal-electronic-structure-1212. 
  11. "A new 'spin' on kagome lattices" (in en). https://phys.org/news/2018-12-kagome-lattices.html. 
  12. Ye, Linda; Chan Mun K.; McDonald, Ross D.; Graf, David; Kang Mingu; Liu Junwei; Suzuki Takehito; Comin, Riccardo et al. (2019-10-25). "de Haas-van Alphen effect of correlated Dirac states in kagome metal Fe3Sn2" (in en). Nature Communications 10 (1): 4870. doi:10.1038/s41467-019-12822-1. ISSN 2041-1723. PMID 31653866. Bibcode2019NatCo..10.4870Y. 
  13. Ortiz, Brenden R.; Teicher, Samuel M. L.; Hu Yong; Zuo, Julia L.; Sarte, Paul M.; Schueller, Emily C.; Abeykoon, A. M. Milinda; Krogstad, Matthew J. et al. (2020-12-10). "CsV3Sb5: A Z2 Topological Kagome Metal with a Superconducting Ground State". Physical Review Letters 125 (24): 247002. doi:10.1103/PhysRevLett.125.247002. PMID 33412053. Bibcode2020PhRvL.125x7002O. https://link.aps.org/doi/10.1103/PhysRevLett.125.247002. 
  14. Zhao He; Li Hong; Ortiz, Brenden R.; Teicher, Samuel M. L.; Park, Takamori; Ye Mengxing; Wang Ziqiang; Balents, Leon et al. (November 2021). "Cascade of correlated electron states in the kagome superconductor CsV3Sb5" (in en). Nature 599 (7884): 216–221. doi:10.1038/s41586-021-03946-w. ISSN 1476-4687. PMID 34587622. Bibcode2021Natur.599..216Z. https://www.nature.com/articles/s41586-021-03946-w. 
  15. Guo Chunyu; Putzke, Carsten; Konyzheva, Sofia; Huang Xiangwei; Gutierrez-Amigo, Martin; Errea, Ion; Chen Dong; Vergniory, Maia G. et al. (2022-10-12). "Switchable chiral transport in charge-ordered kagome metal CsV3Sb5" (in en). Nature 611 (7936): 461–466. doi:10.1038/s41586-022-05127-9. ISSN 1476-4687. PMID 36224393. Bibcode2022Natur.611..461G. 
  16. Jiang Yu-Xiao; Yin Jia-Xin; Denner, M. Michael; Shumiya, Nana; Ortiz, Brenden R.; Xu Gang; Guguchia, Zurab; He Junyi et al. (October 2021). "Unconventional chiral charge order in kagome superconductor KV3Sb5" (in en). Nature Materials 20 (10): 1353–1357. doi:10.1038/s41563-021-01034-y. ISSN 1476-4660. PMID 34112979. Bibcode2021NatMa..20.1353J. https://www.nature.com/articles/s41563-021-01034-y. 
  17. Chen Hui; Yang Haitao; Hu Bin; Zhao Zhen; Yuan Jie; Xing Yuqing; Qian Guojian; Huang Zihao et al. (November 2021). "Roton pair density wave in a strong-coupling kagome superconductor" (in en). Nature 599 (7884): 222–228. doi:10.1038/s41586-021-03983-5. ISSN 1476-4687. PMID 34587621. Bibcode2021Natur.599..222C. https://www.nature.com/articles/s41586-021-03983-5. 
  18. Hou Zhipeng; Ren Weijun; Ding Bei; Xu Guizhou; Wang Yue; Yang Bing; Zhang Qiang; Zhang Ying et al. (August 2017). "Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy" (in en). Advanced Materials 29 (29): 1701144. doi:10.1002/adma.201701144. PMID 28589629. Bibcode2017AdM....2901144H. https://onlinelibrary.wiley.com/doi/10.1002/adma.201701144.