Astronomy:109 Piscium b
Render of 109 Piscium b made with SpaceEngine | |
Discovery[1][2] | |
---|---|
Discovered by | California and Carnegie Planet Search |
Discovery site | W. M. Keck Observatory |
Discovery date | November 1, 1999 |
Doppler spectroscopy | |
Orbital characteristics[3] | |
2.051+0.079 −0.087 astronomical unit|AU | |
Eccentricity | 0.104+0.009 −0.008 |
Orbital period | 2.944 ± 0.002 years (1,075.30 ± 0.73 d) |
Inclination | 86.116°+19.957° −20.530° |
Longitude of ascending node | 38.852°+15.084° −21.589° |
|{{{apsis}}}|helion}} | 2,449,333.898+14.739 −15.380 |
112.816°+5.254° −5.448° | |
Semi-amplitude | 114.583+1.067 −1.196 m/s |
Star | 109 Piscium |
Physical characteristics[3] | |
Mass | 5.743+1.011 −0.289 Jupiter mass |
109 Piscium b (aka HD 10697 b) is a long-period extrasolar planet discovered in orbit around 109 Piscium. It is about 5.74 times the mass of Jupiter and is likely to be a gas giant. As is common for long-period planets discovered around other stars, it has an orbital eccentricity greater than that of Jupiter.
The discoverers estimate its effective temperature as 264 K from solar heating, but it could be at least 10 to 20 K warmer because of internal heating.[2] It orbits within the habitable zone.[1]
Preliminary astrometric measurements suggested that the orbital inclination is 170.3°,[4] yielding an object mass of 38 times that of Jupiter, which would make it a brown dwarf. However, subsequent analysis indicates that the precision of the measurements used to derive the astrometric orbit is insufficient to constrain the parameters.[5] A more plausible suggestion is that this planet shares its star's inclination, of 69+21−26°.[6][7] In 2022, the inclination and true mass of 109 Piscium b were measured via astrometry. The inclination estimate is consistent with that of the stellar rotation.[3]
See also
- 54 Piscium b – another nearby planet in the constellation of Pisces
- List of exoplanets discovered before 2000
References
- ↑ 1.0 1.1 "Astronomers discover six new planets orbiting nearby stars" (Press release). Kamuela, Hawaii: W. M. Keck Observatory. November 1, 1999. Retrieved December 19, 2017.
- ↑ 2.0 2.1 Vogt, Steven S. et al. (2000). "Six New Planets from the Keck Precision Velocity Survey". The Astrophysical Journal 536 (2): 902–914. doi:10.1086/308981. Bibcode: 2000ApJ...536..902V.
- ↑ 3.0 3.1 3.2 Feng, Fabo et al. (August 2022). "3D Selection of 167 Substellar Companions to Nearby Stars". The Astrophysical Journal Supplement Series 262 (21): 21. doi:10.3847/1538-4365/ac7e57. Bibcode: 2022ApJS..262...21F.
- ↑ Han, Inwoo; Black, David C.; Gatewood, George (2001). "Preliminary astrometric masses for proposed extrasolar planetary companions". The Astrophysical Journal Letters 548 (1): L57–L60. doi:10.1086/318927. Bibcode: 2001ApJ...548L..57H.
- ↑ Pourbaix, D.; Arenou, F. (2001). "Screening the Hipparcos-based astrometric orbits of sub-stellar objects". Astronomy and Astrophysics 372 (3): 935–944. doi:10.1051/0004-6361:20010597. Bibcode: 2001A&A...372..935P.
- ↑ "hd_10697_b". Extrasolar Planets Encyclopaedia. 1995. https://exoplanet.eu/catalog/hd_10697_b--95/.
- ↑ Roberto Sanchis-Ojeda; Josh N. Winn; Daniel C. Fabrycky (2012). "Starspots and spin-orbit alignment for Kepler cool host stars". Astronomische Nachrichten 334 (1–2): 180–183. doi:10.1002/asna.201211765. Bibcode: 2013AN....334..180S.
Coordinates: 01h 44m 55s, +20° 04′ 59″
Original source: https://en.wikipedia.org/wiki/109 Piscium b.
Read more |