Turán's inequalities

From HandWiki
Revision as of 13:48, 6 February 2024 by Jworkorg (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, Turán's inequalities are some inequalities for Legendre polynomials found by Pál Turán (1950) (and first published by (Szegö 1948)). There are many generalizations to other polynomials, often called Turán's inequalities, given by (E. F. Beckenbach, W. Seidel & Otto Szász 1951) and other authors.

If [math]\displaystyle{ P_n }[/math] is the [math]\displaystyle{ n }[/math]th Legendre polynomial, Turán's inequalities state that

[math]\displaystyle{ \,\! P_n(x)^2 \gt P_{n-1}(x)P_{n+1}(x)\ \text{for}\ -1\lt x\lt 1. }[/math]


For [math]\displaystyle{ H_n }[/math], the [math]\displaystyle{ n }[/math]th Hermite polynomial, Turán's inequalities are

[math]\displaystyle{ H_n(x)^2 - H_{n-1}(x)H_{n+1}(x)= (n-1)!\cdot \sum_{i=0}^{n-1}\frac{2^{n-i}}{i!}H_i(x)^2\gt 0 , }[/math]

whilst for Chebyshev polynomials they are

[math]\displaystyle{ T_n(x)^2 - T_{n-1}(x)T_{n+1}(x)= 1-x^2\gt 0 \ \text{for}\ -1\lt x\lt 1 . }[/math]

See also

References

  • Beckenbach, E. F.; Seidel, W.; Szász, Otto (1951), "Recurrent determinants of Legendre and of ultraspherical polynomials", Duke Math. J. 18: 1–10, doi:10.1215/S0012-7094-51-01801-7 
  • Szegö, G. (1948), "On an inequality of P. Turán concerning Legendre polynomials", Bull. Amer. Math. Soc. 54 (4): 401–405, doi:10.1090/S0002-9904-1948-09017-6 
  • Turán, Paul (1950), "On the zeros of the polynomials of Legendre", Časopis Pěst. Mat. Fys. 75 (3): 113–122, doi:10.21136/CPMF.1950.123879