Mean value problem
In mathematics, the mean value problem was posed by Stephen Smale in 1981.[1] This problem is still open in full generality. The problem asks:
- For a given complex polynomial [math]\displaystyle{ f }[/math] of degree [math]\displaystyle{ d \ge 2 }[/math][2]A and a complex number [math]\displaystyle{ z }[/math], is there a critical point [math]\displaystyle{ c }[/math] of [math]\displaystyle{ f }[/math] (i.e. [math]\displaystyle{ f'(c) = 0 }[/math]) such that
- [math]\displaystyle{ \left| \frac{f(z) - f(c)}{z - c} \right| \le K|f'(z)| \text{ for }K=1 \text{?} }[/math]
It was proved for [math]\displaystyle{ K=4 }[/math].[1] For a polynomial of degree [math]\displaystyle{ d }[/math] the constant [math]\displaystyle{ K }[/math] has to be at least [math]\displaystyle{ \frac{d-1}{d} }[/math] from the example [math]\displaystyle{ f(z) = z^{d} - d z }[/math], therefore no bound better than [math]\displaystyle{ K=1 }[/math] can exist.
Partial results
The conjecture is known to hold in special cases; for other cases, the bound on [math]\displaystyle{ K }[/math] could be improved depending on the degree [math]\displaystyle{ d }[/math], although no absolute bound [math]\displaystyle{ K\lt 4 }[/math] is known that holds for all [math]\displaystyle{ d }[/math].
In 1989, Tischler has shown that the conjecture is true for the optimal bound [math]\displaystyle{ K = \frac{d-1}{d} }[/math] if [math]\displaystyle{ f }[/math] has only real roots, or if all roots of [math]\displaystyle{ f }[/math] have the same norm.[3][4] In 2007, Conte et al. proved that [math]\displaystyle{ K \le 4 \frac{d-1}{d+1} }[/math],[2] slightly improving on the bound [math]\displaystyle{ K \le 4 }[/math] for fixed [math]\displaystyle{ d }[/math]. In the same year, Crane has shown that [math]\displaystyle{ K \lt 4-\frac{2.263}{\sqrt{d}} }[/math] for [math]\displaystyle{ d \ge 8 }[/math].[5]
Considering the reverse inequality, Dubinin and Sugawa have proven that (under the same conditions as above) there exists a critical point [math]\displaystyle{ \zeta }[/math] such that [math]\displaystyle{ \left| \frac{f(z) - f(\zeta)}{z - \zeta} \right| \ge \frac{|f'(z)|}{n 4^{n}} }[/math].[6] The problem of optimizing this lower bound is known as the dual mean value problem.[7]
See also
Notes
- A.^ The constraint on the degree is used but not explicitly stated in Smale (1981); it is made explicit for example in Conte (2007). The constraint is necessary. Without it, the conjecture would be false: The polynomial f(z) = z does not have any critical points.
References
- ↑ 1.0 1.1 Smale, S. (1981). "The Fundamental Theorem of Algebra and Complexity Theory". Bulletin of the American Mathematical Society. New Series 4 (1): 1–36. doi:10.1090/S0273-0979-1981-14858-8. https://www.ams.org/journals/bull/1981-04-01/S0273-0979-1981-14858-8/S0273-0979-1981-14858-8.pdf. Retrieved 23 October 2017.
- ↑ 2.0 2.1 Conte, A.; Fujikawa, E.; Lakic, N. (20 June 2007). "Smale's mean value conjecture and the coefficients of univalent functions". Proceedings of the American Mathematical Society 135 (10): 3295–3300. doi:10.1090/S0002-9939-07-08861-2. https://www.ams.org/journals/proc/2007-135-10/S0002-9939-07-08861-2/S0002-9939-07-08861-2.pdf. Retrieved 23 October 2017.
- ↑ Tischler, D. (1989). "Critical Points and Values of Complex Polynomials". Journal of Complexity 5 (4): 438–456. doi:10.1016/0885-064X(89)90019-8.
- ↑ Smale, Steve. "Mathematical Problems for the Next Century". http://www6.cityu.edu.hk/ma/doc/people/smales/pap104.pdf.
- ↑ Crane, E. (22 August 2007). "A bound for Smale's mean value conjecture for complex polynomials". Bulletin of the London Mathematical Society 39 (5): 781–791. doi:10.1112/blms/bdm063. https://people.maths.bris.ac.uk/~maetc/SMVCbound.pdf. Retrieved 23 October 2017.
- ↑ Dubinin, V.; Sugawa, T. (2009). "Dual mean value problem for complex polynomials". Proceedings of the Japan Academy, Series A, Mathematical Sciences 85 (9): 135–137. doi:10.3792/pjaa.85.135. Bibcode: 2009arXiv0906.4605D. https://projecteuclid.org/euclid.pja/1257430681. Retrieved 23 October 2017.
- ↑ Ng, T.-W.; Zhang, Y. (2016). "Smale's mean value conjecture for finite Blaschke products". The Journal of Analysis 24 (2): 331–345. doi:10.1007/s41478-016-0007-4. Bibcode: 2016arXiv160900170N.
Original source: https://en.wikipedia.org/wiki/Mean value problem.
Read more |