List of unsolved problems in mathematics

From HandWiki
Short description: none


Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the Millennium Prize Problems, receive considerable attention.

This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative. Although this list may never be comprehensive, the problems listed here vary widely in both difficulty and importance.

Lists of unsolved problems in mathematics

Various mathematicians and organizations have published and promoted lists of unsolved mathematical problems. In some cases, the lists have been associated with prizes for the discoverers of solutions.

List Number of
problems
Number unsolved
or incompletely solved
Proposed by Proposed
in
Thurston's 24 questions[1][2] 24 - William Thurston 1982
Smale's problems 18 14 Stephen Smale 1998
Millennium Prize Problems 7 6[3] Clay Mathematics Institute 2000
Simon problems 15 <12[4][5] Barry Simon 2000
Unsolved Problems on Mathematics for the 21st Century[6] 22 - Jair Minoro Abe, Shotaro Tanaka 2001
DARPA's math challenges[7][8] 23 - DARPA 2007
The Riemann zeta function, subject of the celebrated and influential unsolved problem known as the Riemann hypothesis

Millennium Prize Problems

Of the original seven Millennium Prize Problems listed by the Clay Mathematics Institute in 2000, six remain unsolved to date:[3]

The seventh problem, the Poincaré conjecture, was solved by Grigori Perelman in 2003.[9] However, a generalization called the smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is unsolved.[10]

Notebooks

  • The Kourovka Notebook (Russian: Коуровская тетрадь) is a collection of unsolved problems in group theory, first published in 1965 and updated many times since.[11]
  • The Sverdlovsk Notebook (Russian: Свердловская тетрадь) is a collection of unsolved problems in semigroup theory, first published in 1969 and updated many times since.[12][13][14]
  • The Dniester Notebook (Russian: Днестровская тетрадь) lists several hundred unsolved problems in algebra, particularly ring theory and modulus theory.[15][16]
  • The Erlagol Notebook (Russian: Эрлагольская тетрадь) lists unsolved problems in algebra and model theory.[17]

Unsolved problems

Algebra

Main page: Algebra
In the Bloch sphere representation of a qubit, a SIC-POVM forms a regular tetrahedron. Zauner conjectured that analogous structures exist in complex Hilbert spaces of all finite dimensions.

Group theory

Main page: Group theory
The free Burnside group [math]\displaystyle{ B(2,3) }[/math] is finite; in its Cayley graph, shown here, each of its 27 elements is represented by a vertex. The question of which other groups [math]\displaystyle{ B(m,n) }[/math] are finite remains open.
  • Andrews–Curtis conjecture: every balanced presentation of the trivial group can be transformed into a trivial presentation by a sequence of Nielsen transformations on relators and conjugations of relators
  • Burnside problem: for which positive integers m, n is the free Burnside group B(m,n) finite? In particular, is B(2, 5) finite?
  • Guralnick–Thompson conjecture on the composition factors of groups in genus-0 systems[19]
  • Herzog–Schönheim conjecture: if a finite system of left cosets of subgroups of a group [math]\displaystyle{ G }[/math] form a partition of [math]\displaystyle{ G }[/math], then the finite indices of said subgroups cannot be distinct.
  • The inverse Galois problem: is every finite group the Galois group of a Galois extension of the rationals?
  • Problems in loop theory and quasigroup theory consider generalizations of groups

Representation theory

Analysis

Main page: Mathematical analysis
The area of the blue region converges to the Euler–Mascheroni constant, which may or may not be a rational number.
  • The Brennan conjecture: estimating the integral of powers of the moduli of the derivative of conformal maps into the open unit disk, on certain subsets of [math]\displaystyle{ \mathbb{C} }[/math]
  • The four exponentials conjecture: the transcendence of at least one of four exponentials of combinations of irrationals[20]
  • Fuglede's conjecture on whether nonconvex sets in [math]\displaystyle{ \mathbb{R} }[/math] and [math]\displaystyle{ \mathbb{R}^{2} }[/math] are spectral if and only if they tile by translation.
  • Goodman's conjecture on the coefficients of multivalent functions
  • Invariant subspace problem – does every bounded operator on a complex Banach space send some non-trivial closed subspace to itself?
  • Kung–Traub conjecture on the optimal order of a multipoint iteration without memory[21]
  • Lehmer's conjecture on the Mahler measure of non-cyclotomic polynomials[22]
  • The mean value problem: given a complex polynomial [math]\displaystyle{ f }[/math] of degree [math]\displaystyle{ d \ge 2 }[/math] and a complex number [math]\displaystyle{ z }[/math], is there a critical point [math]\displaystyle{ c }[/math] of [math]\displaystyle{ f }[/math] such that [math]\displaystyle{ |f(z)-f(c)| \le |f'(z)||z-c| }[/math]?
  • The Pompeiu problem on the topology of domains for which some nonzero function has integrals that vanish over every congruent copy[23]
  • Schanuel's conjecture on the transcendence degree of exponentials of linearly independent irrationals[20]
  • Sendov's conjecture: if a complex polynomial with degree at least [math]\displaystyle{ 2 }[/math] has all roots in the closed unit disk, then each root is within distance [math]\displaystyle{ 1 }[/math] from some critical point.
  • Vitushkin's conjecture on compact subsets of [math]\displaystyle{ \mathbb{C} }[/math] with analytic capacity [math]\displaystyle{ 0 }[/math]
  • Regularity of solutions of Euler equations
  • Convergence of Flint Hills series
  • Regularity of solutions of Vlasov–Maxwell equations

Combinatorics

Main page: Combinatorics
  • The 1/3–2/3 conjecture – does every finite partially ordered set that is not totally ordered contain two elements x and y such that the probability that x appears before y in a random linear extension is between 1/3 and 2/3?[27]
  • The Dittert conjecture concerning the maximum achieved by a particular function of matrices with real, nonnegative entries satisfying a summation condition
  • Problems in Latin squares – open questions concerning Latin squares
  • The lonely runner conjecture – if [math]\displaystyle{ k }[/math] runners with pairwise distinct speeds run round a track of unit length, will every runner be "lonely" (that is, be at least a distance [math]\displaystyle{ 1/k }[/math] from each other runner) at some time?[28]
  • Map folding – various problems in map folding and stamp folding.
  • No-three-in-line problem – how many points can be placed in the [math]\displaystyle{ n \times n }[/math] grid so that no three of them lie on a line?
  • Rudin's conjecture on the number of squares in finite arithmetic progressions[29]
  • The sunflower conjecture – can the number of [math]\displaystyle{ k }[/math] size sets required for the existence of a sunflower of [math]\displaystyle{ r }[/math] sets be bounded by an exponential function in [math]\displaystyle{ k }[/math] for every fixed [math]\displaystyle{ r\gt 2 }[/math]?
  • Frankl's union-closed sets conjecture – for any family of sets closed under sums there exists an element (of the underlying space) belonging to half or more of the sets[30]

Dynamical systems

Main page: Dynamical system
A detail of the Mandelbrot set. It is not known whether the Mandelbrot set is locally connected or not.

Games and puzzles

Main page: Game theory

Combinatorial games

Main page: Combinatorial game theory
  • Sudoku:
  • Tic-tac-toe variants:
    • Given the width of a tic-tac-toe board, what is the smallest dimension such that X is guaranteed to have a winning strategy? (See also Hales-Jewett theorem and nd game)[40]
  • Chess:
    • What is the outcome of a perfectly played game of chess? (See also first-move advantage in chess)
  • Go:
    • What is the perfect value of Komi?
  • What is the Turing completeness status of all unique elementary cellular automata?
  • Are the nim-sequences of all finite octal games eventually periodic?
  • Is the nim-sequence of Grundy's game eventually periodic?

Games with imperfect information

Geometry

Main page: Geometry

Algebraic geometry

Main page: Algebraic geometry

Covering and packing

  • Borsuk's problem on upper and lower bounds for the number of smaller-diameter subsets needed to cover a bounded n-dimensional set.
  • The covering problem of Rado: if the union of finitely many axis-parallel squares has unit area, how small can the largest area covered by a disjoint subset of squares be?[44]
  • The Erdős–Oler conjecture: when [math]\displaystyle{ n }[/math] is a triangular number, packing [math]\displaystyle{ n-1 }[/math] circles in an equilateral triangle requires a triangle of the same size as packing [math]\displaystyle{ n }[/math] circles[45]
  • The kissing number problem for dimensions other than 1, 2, 3, 4, 8 and 24[46]
  • Reinhardt's conjecture: the smoothed octagon has the lowest maximum packing density of all centrally-symmetric convex plane sets[47]
  • Sphere packing problems, including the density of the densest packing in dimensions other than 1, 2, 3, 8 and 24, and its asymptotic behavior for high dimensions.
  • Square packing in a square: what is the asymptotic growth rate of wasted space?[48]
  • Ulam's packing conjecture about the identity of the worst-packing convex solid[49]

Differential geometry

Main page: Differential geometry

Discrete geometry

Main page: Discrete geometry
In three dimensions, the kissing number is 12, because 12 non-overlapping unit spheres can be put into contact with a central unit sphere. (Here, the centers of outer spheres form the vertices of a regular icosahedron.) Kissing numbers are only known exactly in dimensions 1, 2, 3, 4, 8 and 24.
  • Finding matching upper and lower bounds for k-sets and halving lines[61]
  • Tripod packing:[62] how many tripods can have their apexes packed into a given cube?

Euclidean geometry

Main page: Euclidean geometry
  • The Atiyah conjecture on configurations on the invertibility of a certain [math]\displaystyle{ n }[/math]-by-[math]\displaystyle{ n }[/math] matrix depending on [math]\displaystyle{ n }[/math] points in [math]\displaystyle{ \mathbb{R}^{3} }[/math][63]
  • Bellman's lost in a forest problem – find the shortest route that is guaranteed to reach the boundary of a given shape, starting at an unknown point of the shape with unknown orientation[64]
  • Borromean rings — are there three unknotted space curves, not all three circles, which cannot be arranged to form this link?[65]
  • Danzer's problem and Conway's dead fly problem – do Danzer sets of bounded density or bounded separation exist?[66]
  • Dissection into orthoschemes – is it possible for simplices of every dimension?[67]
  • Ehrhart's volume conjecture: a convex body [math]\displaystyle{ K }[/math] in [math]\displaystyle{ n }[/math] dimensions containing a single lattice point in its interior as its center of mass cannot have volume greater than [math]\displaystyle{ (n+1)^{n}/n! }[/math]
  • Falconer's conjecture: sets of Hausdorff dimension greater than [math]\displaystyle{ d/2 }[/math] in [math]\displaystyle{ \mathbb{R}^d }[/math] must have a distance set of nonzero Lebesgue measure[68]
  • The values of the Hermite constants for dimensions other than 1–8 and 24
  • Inscribed square problem, also known as Toeplitz' conjecture and the square peg problem – does every Jordan curve have an inscribed square?[69]
  • The Kakeya conjecture – do [math]\displaystyle{ n }[/math]-dimensional sets that contain a unit line segment in every direction necessarily have Hausdorff dimension and Minkowski dimension equal to [math]\displaystyle{ n }[/math]?[70]
  • The Kelvin problem on minimum-surface-area partitions of space into equal-volume cells, and the optimality of the Weaire–Phelan structure as a solution to the Kelvin problem[71]
  • Lebesgue's universal covering problem on the minimum-area convex shape in the plane that can cover any shape of diameter one[72]
  • Mahler's conjecture on the product of the volumes of a centrally symmetric convex body and its polar.[73]
  • Moser's worm problem – what is the smallest area of a shape that can cover every unit-length curve in the plane?[74]
  • The moving sofa problem – what is the largest area of a shape that can be maneuvered through a unit-width L-shaped corridor?[75]
  • Does every convex polyhedron have Rupert's property?[76][77]
  • Shephard's problem (a.k.a. Dürer's conjecture) – does every convex polyhedron have a net, or simple edge-unfolding?[78][79]
  • Is there a non-convex polyhedron without self-intersections with more than seven faces, all of which share an edge with each other?
  • The Thomson problem – what is the minimum energy configuration of [math]\displaystyle{ n }[/math] mutually-repelling particles on a unit sphere?[80]
  • Convex uniform 5-polytopes – find and classify the complete set of these shapes[81]

Graph theory

Main page: Graph theory

Algebraic graph theory

Games on graphs

  • Graham's pebbling conjecture on the pebbling number of Cartesian products of graphs[82]
  • Meyniel's conjecture that cop number is [math]\displaystyle{ O(\sqrt n) }[/math][83]

Graph coloring and labeling

An instance of the Erdős–Faber–Lovász conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored.

Graph drawing and embedding

Restriction of graph parameters

Subgraphs

Word-representation of graphs

Miscellaneous graph theory

Model theory and formal languages

  • The Cherlin–Zilber conjecture: A simple group whose first-order theory is stable in [math]\displaystyle{ \aleph_0 }[/math] is a simple algebraic group over an algebraically closed field.
  • Generalized star height problem: can all regular languages be expressed using generalized regular expressions with limited nesting depths of Kleene stars?
  • For which number fields does Hilbert's tenth problem hold?
  • Kueker's conjecture[130]
  • The main gap conjecture, e.g. for uncountable first order theories, for AECs, and for [math]\displaystyle{ \aleph_1 }[/math]-saturated models of a countable theory.[131]
  • Shelah's categoricity conjecture for [math]\displaystyle{ L_{\omega_1,\omega} }[/math]: If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.[131]
  • Shelah's eventual categoricity conjecture: For every cardinal [math]\displaystyle{ \lambda }[/math] there exists a cardinal [math]\displaystyle{ \mu(\lambda) }[/math] such that if an AEC K with LS(K)<= [math]\displaystyle{ \lambda }[/math] is categorical in a cardinal above [math]\displaystyle{ \mu(\lambda) }[/math] then it is categorical in all cardinals above [math]\displaystyle{ \mu(\lambda) }[/math].[131][132]
  • The stable field conjecture: every infinite field with a stable first-order theory is separably closed.
  • The stable forking conjecture for simple theories[133]
  • Tarski's exponential function problem: is the theory of the real numbers with the exponential function decidable?
  • The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings?[134]
  • The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?[135]
  • Vaught conjecture: the number of countable models of a first-order complete theory in a countable language is either finite, [math]\displaystyle{ \aleph_{0} }[/math], or [math]\displaystyle{ 2^{\aleph_{0}} }[/math].
  • Assume K is the class of models of a countable first order theory omitting countably many types. If K has a model of cardinality [math]\displaystyle{ \aleph_{\omega_1} }[/math] does it have a model of cardinality continuum?[136]
  • Do the Henson graphs have the finite model property?
  • Does a finitely presented homogeneous structure for a finite relational language have finitely many reducts?
  • Does there exist an o-minimal first order theory with a trans-exponential (rapid growth) function?
  • If the class of atomic models of a complete first order theory is categorical in the [math]\displaystyle{ \aleph_n }[/math], is it categorical in every cardinal?[137][138]
  • Is every infinite, minimal field of characteristic zero algebraically closed? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.)
  • Is the Borel monadic theory of the real order (BMTO) decidable? Is the monadic theory of well-ordering (MTWO) consistently decidable?[139]
  • Is the theory of the field of Laurent series over [math]\displaystyle{ \mathbb{Z}_p }[/math] decidable? of the field of polynomials over [math]\displaystyle{ \mathbb{C} }[/math]?
  • Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property?[140]
  • Determine the structure of Keisler's order.[141][142]

Probability theory

Main page: Probability theory

Number theory

General

6 is a perfect number because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them is odd.

Additive number theory

Main page: Additive number theory
  • Beal's conjecture: for all integral solutions to [math]\displaystyle{ A^{x} + B^{y} = C^{z} }[/math] where [math]\displaystyle{ x, y, z \gt 2 }[/math], all three numbers [math]\displaystyle{ A, B, C }[/math] must share some prime factor.
  • Erdős conjecture on arithmetic progressions that if the sum of the reciprocals of the members of a set of positive integers diverges, then the set contains arbitrarily long arithmetic progressions.
  • Erdős–Heilbronn conjecture that [math]\displaystyle{ |2^\wedge A| \ge \min\{p,2|A|-3\} }[/math] if [math]\displaystyle{ p }[/math] is a prime and [math]\displaystyle{ A }[/math] is a nonempty subset of the field [math]\displaystyle{ \mathbb{Z}/p\mathbb{Z} }[/math].
  • Erdős–Turán conjecture on additive bases: if [math]\displaystyle{ B }[/math] is an additive basis of order [math]\displaystyle{ 2 }[/math], then the number of ways that positive integers [math]\displaystyle{ n }[/math] can be expressed as the sum of two numbers in [math]\displaystyle{ B }[/math] must tend to infinity as [math]\displaystyle{ n }[/math] tends to infinity.
  • Fermat–Catalan conjecture: there are finitely many distinct solutions [math]\displaystyle{ (a^{m}, b^{n}, c^{k}) }[/math] to the equation [math]\displaystyle{ a^{m} + b^{n} = c^{k} }[/math] with [math]\displaystyle{ a, b, c }[/math] being positive coprime integers and [math]\displaystyle{ m, n, k }[/math] being positive integers satisfying [math]\displaystyle{ 1/m + 1/n + 1/k \lt 1 }[/math].
  • Gilbreath's conjecture on consecutive applications of the unsigned forward difference operator to the sequence of prime numbers.
  • Goldbach's conjecture: every even natural number greater than [math]\displaystyle{ 2 }[/math] is the sum of two prime numbers.
  • Lander, Parkin, and Selfridge conjecture: if the sum of [math]\displaystyle{ m }[/math] [math]\displaystyle{ k }[/math]-th powers of positive integers is equal to a different sum of [math]\displaystyle{ n }[/math] [math]\displaystyle{ k }[/math]-th powers of positive integers, then [math]\displaystyle{ m + n \geq k }[/math].
  • Lemoine's conjecture: all odd integers greater than [math]\displaystyle{ 5 }[/math] can be represented as the sum of an odd prime number and an even semiprime.
  • Minimum overlap problem of estimating the minimum possible maximum number of times a number appears in the termwise difference of two equally large sets partitioning the set [math]\displaystyle{ \{1, \ldots, 2n\} }[/math]
  • Pollock's conjectures
  • Does every nonnegative integer appear in Recamán's sequence?
  • Skolem problem: can an algorithm determine if a constant-recursive sequence contains a zero?
  • The values of g(k) and G(k) in Waring's problem

Algebraic number theory

Main page: Algebraic number theory
  • Characterize all algebraic number fields that have some power basis.

Computational number theory

Main page: Computational number theory

Prime numbers

Goldbach's conjecture states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.
  • Agoh–Giuga conjecture on the Bernoulli numbers that [math]\displaystyle{ p }[/math] is prime if and only if [math]\displaystyle{ pB_{p-1} \equiv -1 \pmod p }[/math]
  • Agrawal's conjecture that given coprime positive integers [math]\displaystyle{ n }[/math] and [math]\displaystyle{ r }[/math], if [math]\displaystyle{ (X - 1)^{n} \equiv X^{n} - 1 \pmod{n, X^{r} - 1} }[/math], then either [math]\displaystyle{ n }[/math] is prime or [math]\displaystyle{ n^{2} \equiv 1 \pmod{r} }[/math]
  • Artin's conjecture on primitive roots that if an integer is neither a perfect square nor [math]\displaystyle{ -1 }[/math], then it is a primitive root modulo infinitely many prime numbers [math]\displaystyle{ p }[/math]
  • Brocard's conjecture: there are always at least [math]\displaystyle{ 4 }[/math] prime numbers between consecutive squares of prime numbers, aside from [math]\displaystyle{ 2^{2} }[/math] and [math]\displaystyle{ 3^{2} }[/math].
  • Bunyakovsky conjecture: if an integer-coefficient polynomial [math]\displaystyle{ f }[/math] has a positive leading coefficient, is irreducible over the integers, and has no common factors over all [math]\displaystyle{ f(x) }[/math] where [math]\displaystyle{ x }[/math] is a positive integer, then [math]\displaystyle{ f(x) }[/math] is prime infinitely often.
  • Catalan's Mersenne conjecture: some Catalan–Mersenne number is composite and thus all Catalan–Mersenne numbers are composite after some point.
  • Dickson's conjecture: for a finite set of linear forms [math]\displaystyle{ a_{1} + b_{1}n, \ldots, a_{k} + b_{k}n }[/math] with each [math]\displaystyle{ b_{i} \geq 1 }[/math], there are infinitely many [math]\displaystyle{ n }[/math] for which all forms are prime, unless there is some congruence condition preventing it.
  • Dubner's conjecture: every even number greater than [math]\displaystyle{ 4208 }[/math] is the sum of two primes which both have a twin.
  • Elliott–Halberstam conjecture on the distribution of prime numbers in arithmetic progressions.
  • Erdős–Mollin–Walsh conjecture: no three consecutive numbers are all powerful.
  • Feit–Thompson conjecture: for all distinct prime numbers [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math], [math]\displaystyle{ (p^{q} - 1)/(p - 1) }[/math] does not divide [math]\displaystyle{ (q^{p} - 1)/(q - 1) }[/math]
  • Fortune's conjecture that no Fortunate number is composite.
  • The Gaussian moat problem: is it possible to find an infinite sequence of distinct Gaussian prime numbers such that the difference between consecutive numbers in the sequence is bounded?
  • Gillies' conjecture on the distribution of prime divisors of Mersenne numbers.
  • Landau's problems
    • Goldbach conjecture: all even natural numbers greater than [math]\displaystyle{ 2 }[/math] are the sum of two prime numbers.
    • Legendre's conjecture: for every positive integer [math]\displaystyle{ n }[/math], there is a prime between [math]\displaystyle{ n^{2} }[/math] and [math]\displaystyle{ (n+1)^{2} }[/math].
    • Twin prime conjecture: there are infinitely many twin primes.
    • Are there infinitely many primes of the form [math]\displaystyle{ n^{2} + 1 }[/math]?
  • Problems associated to Linnik's theorem
  • New Mersenne conjecture: for any odd natural number [math]\displaystyle{ p }[/math], if any two of the three conditions [math]\displaystyle{ p = 2^{k} \pm 1 }[/math] or [math]\displaystyle{ p = 4^{k} \pm 3 }[/math], [math]\displaystyle{ 2^{p} - 1 }[/math] is prime, and [math]\displaystyle{ (2^{p} + 1)/3 }[/math] is prime are true, then the third condition is true.
  • Polignac's conjecture: for all positive even numbers [math]\displaystyle{ n }[/math], there are infinitely many prime gaps of size [math]\displaystyle{ n }[/math].
  • Schinzel's hypothesis H that for every finite collection [math]\displaystyle{ \{f_{1}, \ldots, f_{k}\} }[/math] of nonconstant irreducible polynomials over the integers with positive leading coefficients, either there are infinitely many positive integers [math]\displaystyle{ n }[/math] for which [math]\displaystyle{ f_{1}(n), \ldots, f_{k}(n) }[/math] are all primes, or there is some fixed divisor [math]\displaystyle{ m \gt 1 }[/math] which, for all [math]\displaystyle{ n }[/math], divides some [math]\displaystyle{ f_{i}(n) }[/math].
  • Selfridge's conjecture: is 78,557 the lowest Sierpiński number?
  • Does the converse of Wolstenholme's theorem hold for all natural numbers?

Set theory

Main page: Set theory

Note: These conjectures are about models of Zermelo-Frankel set theory with choice, and may not be able to be expressed in models of other set theories such as the various constructive set theories or non-wellfounded set theory.

  • (Woodin) Does the generalized continuum hypothesis below a strongly compact cardinal imply the generalized continuum hypothesis everywhere?
  • Does the generalized continuum hypothesis entail [math]\displaystyle{ {\diamondsuit(E^{\lambda^+} {\operatorname{cf}(\lambda)}}) }[/math] for every singular cardinal [math]\displaystyle{ \lambda }[/math]?
  • Does the generalized continuum hypothesis imply the existence of an ℵ2-Suslin tree?
  • If ℵω is a strong limit cardinal, is [math]\displaystyle{ 2^{\aleph_\omega} \lt \aleph_{\omega_1} }[/math] (see Singular cardinals hypothesis)? The best bound, ℵω4, was obtained by Shelah using his PCF theory.
  • The problem of finding the ultimate core model, one that contains all large cardinals.
  • Woodin's Ω-conjecture: if there is a proper class of Woodin cardinals, then Ω-logic satisfies an analogue of Gödel's completeness theorem.

Topology

Main page: Topology
The unknotting problem asks whether there is an efficient algorithm to identify when the shape presented in a knot diagram is actually the unknot.

Problems solved in the past 30 years

Ricci flow, here illustrated with a 2D manifold, was the key tool in Grigori Perelman's solution of the Poincaré conjecture.

Algebra

Analysis

Combinatorics

Dynamical systems

Game theory

Geometry

21st century

20th century

Graph theory

Group theory

Number theory

21st century

20th century

Ramsey theory

Theoretical computer science

Topology

Uncategorised

2010s

2000s

See also

Notes

  1. A disproof has been announced, with a preprint made available on arXiv.[154]

References

  1. Friedl, Stefan (2014). "Thurston's vision and the virtual fibering theorem for 3-manifolds". Jahresbericht der Deutschen Mathematiker-Vereinigung 116 (4): 223–241. doi:10.1365/s13291-014-0102-x. 
  2. Thurston, William P. (1982). "Three-dimensional manifolds, Kleinian groups and hyperbolic geometry". Bulletin of the American Mathematical Society. New Series 6 (3): 357–381. doi:10.1090/S0273-0979-1982-15003-0. 
  3. 3.0 3.1 "Millennium Problems". http://claymath.org/millennium-problems. 
  4. "Fields Medal awarded to Artur Avila". 2014-08-13. http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12. 
  5. Bellos, Alex (2014-08-13). "Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained". https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani. 
  6. Abe, Jair Minoro; Tanaka, Shotaro (2001). Unsolved Problems on Mathematics for the 21st Century. IOS Press. ISBN 978-90-5199-490-2. https://books.google.com/books?id=yHzfbqtVGLIC&q=unsolved+problems+in+mathematics. 
  7. "DARPA invests in math". CNN. 2008-10-14. http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html. 
  8. "Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)". DARPA. 2007-09-10. http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html. 
  9. "Poincaré Conjecture". http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture. 
  10. rybu (November 7, 2009). "Smooth 4-dimensional Poincare conjecture". http://www.openproblemgarden.org/?q=op/smooth_4_dimensional_poincare_conjecture. 
  11. Khukhro, Evgeny I.; Mazurov, Victor D. (2019), Unsolved Problems in Group Theory. The Kourovka Notebook 
  12. RSFSR, MV i SSO; Russie), Uralʹskij gosudarstvennyj universitet im A. M. Gorʹkogo (Ekaterinbourg (1969) (in ru). Свердловская тетрадь: нерешенные задачи теории подгрупп. S. l.. https://books.google.com/books?id=nKwgzgEACAAJ. 
  13. Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп. Свердловск: Уральский государственный университет. 1979. 
  14. Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп. Свердловск: Уральский государственный университет. 1989. 
  15. (in ru) ДНЕСТРОВСКАЯ ТЕТРАДЬ, The Russian Academy of Sciences, 1993, http://math.nsc.ru/LBRT/a1/files/dnestr93.pdf 
  16. DNIESTER NOTEBOOK: Unsolved Problems in the Theory of Rings and Modules, https://math.usask.ca/~bremner/research/publications/dniester.pdf, retrieved 2019-08-15 
  17. (in ru) Эрлагольская тетрадь, The Novosibirsk State University, 2018, http://uamt.conf.nstu.ru/erl_note.pdf 
  18. Dowling, T. A. (February 1973). "A class of geometric lattices based on finite groups". Journal of Combinatorial Theory. Series B 14 (1): 61–86. doi:10.1016/S0095-8956(73)80007-3. 
  19. Aschbacher, Michael (1990), "On Conjectures of Guralnick and Thompson", Journal of Algebra 135 (2): 277–343, doi:10.1016/0021-8693(90)90292-V 
  20. 20.0 20.1 Waldschmidt, Michel (2013), Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables, Springer, pp. 14, 16, ISBN 978-3-662-11569-5, https://books.google.com/books?id=Wrj0CAAAQBAJ&pg=PA14 
  21. Kung, H. T.; Traub, Joseph Frederick (1974), "Optimal order of one-point and multipoint iteration", Journal of the ACM 21 (4): 643–651, doi:10.1145/321850.321860 
  22. Smyth, Chris (2008), "The Mahler measure of algebraic numbers: a survey", in McKee, James; Smyth, Chris, Number Theory and Polynomials, London Mathematical Society Lecture Note Series, 352, Cambridge University Press, pp. 322–349, ISBN 978-0-521-71467-9 
  23. Hazewinkel, Michiel, ed. (2001), "Pompeiu problem", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=Pompeiu_problem&oldid=14506 
  24. For some background on the numbers in this problem, see articles by Eric W. Weisstein at Wolfram MathWorld (all articles accessed 15 December 2014):
  25. Waldschmidt, Michel (2008). "An introduction to irrationality and transcendence methods.". 2008 Arizona Winter School. https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf. Retrieved 15 December 2014. 
  26. Albert, John, Some unsolved problems in number theory, http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf, retrieved 15 December 2014 
  27. Brightwell, Graham R.; Felsner, Stefan; Trotter, William T. (1995), "Balancing pairs and the cross product conjecture", Order 12 (4): 327–349, doi:10.1007/BF01110378 .
  28. "Some remarks on the lonely runner conjecture". Contributions to Discrete Mathematics 13 (2): 1–31. 2018. doi:10.11575/cdm.v13i2.62728. 
  29. González-Jiménez, Enrique; Xarles, Xavier (2014). "On a conjecture of Rudin on squares in arithmetic progressions". LMS Journal of Computation and Mathematics 17 (1): 58–76. doi:10.1112/S1461157013000259. 
  30. Bruhn, Henning; Schaudt, Oliver (2015), "The journey of the union-closed sets conjecture", Graphs and Combinatorics 31 (6): 2043–2074, doi:10.1007/s00373-014-1515-0, http://www.zaik.uni-koeln.de/~schaudt/UCSurvey.pdf, retrieved 2017-07-18 
  31. Murnaghan, F. D. (1938), "The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups", American Journal of Mathematics 60 (1): 44–65, doi:10.2307/2371542, PMID 16577800 
  32. "Dedekind Numbers and Related Sequences". http://www.sfu.ca/~tyusun/ThesisDedekind.pdf. 
  33. Liśkiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke (2003-07-28). "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes". Theoretical Computer Science 304 (1): 129–156. doi:10.1016/S0304-3975(03)00080-X. 
  34. S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New York, 1964, page 76.
  35. Kaloshin, Vadim; Sorrentino, Alfonso (2018). "On the local Birkhoff conjecture for convex billiards". Annals of Mathematics 188 (1): 315–380. doi:10.4007/annals.2018.188.1.6. 
  36. Sarnak, Peter (2011), "Recent progress on the quantum unique ergodicity conjecture", Bulletin of the American Mathematical Society 48 (2): 211–228, doi:10.1090/S0273-0979-2011-01323-4 
  37. Paul Halmos, Ergodic theory. Chelsea, New York, 1956.
  38. Kari, Jarkko (2009). "Structure of Reversible Cellular Automata". International Conference on Unconventional Computation. 5715. Springer. p. 6. doi:10.1007/978-3-642-03745-0_5. ISBN 978-3-642-03744-3. Bibcode2009LNCS.5715....6K. 
  39. 39.0 39.1 39.2 "Open Q - Solving and rating of hard Sudoku". http://english.log-it-ex.com/2.html. 
  40. "Higher-Dimensional Tic-Tac-Toe". YouTube. 2017-09-21. https://www.youtube.com/watch?v=FwJZa-helig. 
  41. Barlet, Daniel; Peternell, Thomas; Schneider, Michael (1990). "On two conjectures of Hartshorne's". Mathematische Annalen 286 (1–3): 13–25. doi:10.1007/BF01453563. 
  42. Maulik, Davesh (2004-06-05), Gromov–Witten theory and Donaldson–Thomas theory, I, Bibcode2003math.....12059M 
  43. Zariski, Oscar (1971). "Some open questions in the theory of singularities". Bulletin of the American Mathematical Society 77 (4): 481–491. doi:10.1090/S0002-9904-1971-12729-5. 
  44. Bereg, Sergey; Dumitrescu, Adrian; Jiang, Minghui (2010), "On covering problems of Rado", Algorithmica 57 (3): 538–561, doi:10.1007/s00453-009-9298-z 
  45. Melissen, Hans (1993), "Densest packings of congruent circles in an equilateral triangle", American Mathematical Monthly 100 (10): 916–925, doi:10.2307/2324212 
  46. Conway, John H.; Neil J.A. Sloane (1999), Sphere Packings, Lattices and Groups (3rd ed.), New York: Springer-Verlag, pp. 21–22, ISBN 978-0-387-98585-5 
  47. The Reinhardt conjecture as an optimal control problem, 2017 
  48. Brass, Peter; Moser, William; Pach, János (2005), Research Problems in Discrete Geometry, New York: Springer, p. 45, ISBN 978-0387-23815-9, https://books.google.com/books?id=WehCspo0Qa0C&pg=PA45 
  49. Gardner, Martin (1995), New Mathematical Diversions (Revised Edition), Washington: Mathematical Association of America, p. 251 
  50. Barros, Manuel (1997), "General Helices and a Theorem of Lancret", Proceedings of the American Mathematical Society 125 (5): 1503–1509, doi:10.1090/S0002-9939-97-03692-7 
  51. Katz, Mikhail G. (2007), Systolic geometry and topology, Mathematical Surveys and Monographs, 137, American Mathematical Society, Providence, RI, p. 57, doi:10.1090/surv/137, ISBN 978-0-8218-4177-8, https://books.google.com/books?id=R5_zBwAAQBAJ&pg=PA57 
  52. Rosenberg, Steven (1997), The Laplacian on a Riemannian Manifold: An introduction to analysis on manifolds, London Mathematical Society Student Texts, 31, Cambridge: Cambridge University Press, pp. 62–63, doi:10.1017/CBO9780511623783, ISBN 978-0-521-46300-3, https://books.google.com/books?id=gzJ6Vn0y7XQC&pg=PA62 
  53. Ghosh, Subir Kumar; Goswami, Partha P. (2013), "Unsolved problems in visibility graphs of points, segments, and polygons", ACM Computing Surveys 46 (2): 22:1–22:29, doi:10.1145/2543581.2543589 
  54. Boltjansky, V.; Gohberg, I. (1985), "11. Hadwiger's Conjecture", Results and Problems in Combinatorial Geometry, Cambridge University Press, pp. 44–46 .
  55. Morris, Walter D.; Soltan, Valeriu (2000), "The Erdős-Szekeres problem on points in convex position—a survey", Bull. Amer. Math. Soc. 37 (4): 437–458, doi:10.1090/S0273-0979-00-00877-6 ; Suk, Andrew (2016), "On the Erdős–Szekeres convex polygon problem", J. Amer. Math. Soc. 30 (4): 1047–1053, doi:10.1090/jams/869 
  56. "The number of faces of centrally-symmetric polytopes", Graphs and Combinatorics 5 (1): 389–391, 1989, doi:10.1007/BF01788696 .
  57. Moreno, José Pedro; Prieto-Martínez, Luis Felipe (2021). "El problema de los triángulos de Kobon" (in es). La Gaceta de la Real Sociedad Matemática Española 24 (1): 111–130. 
  58. "An olla-podrida of open problems, often oddly posed", American Mathematical Monthly 90 (3): 196–200, 1983, doi:10.2307/2975549 
  59. Lectures on discrete geometry, Graduate Texts in Mathematics, 212, Springer-Verlag, New York, 2002, p. 206, doi:10.1007/978-1-4613-0039-7, ISBN 978-0-387-95373-1 
  60. Brass, Peter; Moser, William; Pach, János (2005), "5.1 The Maximum Number of Unit Distances in the Plane", Research problems in discrete geometry, Springer, New York, pp. 183–190, ISBN 978-0-387-23815-9 
  61. "Improved bounds for planar k-sets and related problems", Discrete & Computational Geometry 19 (3): 373–382, 1998, doi:10.1007/PL00009354 ; Tóth, Gábor (2001), "Point sets with many k-sets", Discrete & Computational Geometry 26 (2): 187–194, doi:10.1007/s004540010022 .
  62. Aronov, Boris; Dujmović, Vida; Morin, Pat; Ooms, Aurélien; Schultz Xavier da Silveira, Luís Fernando (2019), "More Turán-type theorems for triangles in convex point sets", Electronic Journal of Combinatorics 26 (1): P1.8, doi:10.37236/7224, Bibcode2017arXiv170610193A, https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i1p8, retrieved 2019-02-18 
  63. Atiyah, Michael (2001), "Configurations of points", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359 (1784): 1375–1387, doi:10.1098/rsta.2001.0840, ISSN 1364-503X, Bibcode2001RSPTA.359.1375A 
  64. Finch, S. R.; Wetzel, J. E. (2004), "Lost in a forest", American Mathematical Monthly 11 (8): 645–654, doi:10.2307/4145038 
  65. Howards, Hugh Nelson (2013), "Forming the Borromean rings out of arbitrary polygonal unknots", Journal of Knot Theory and Its Ramifications 22 (14): 1350083, 15, doi:10.1142/S0218216513500831 
  66. Solomon, Yaar; Weiss, Barak (2016), "Dense forests and Danzer sets", Annales Scientifiques de l'École Normale Supérieure 49 (5): 1053–1074, doi:10.24033/asens.2303 ; Conway, John H., Five $1,000 Problems (Update 2017), On-Line Encyclopedia of Integer Sequences, https://oeis.org/A248380/a248380.pdf, retrieved 2019-02-12 
  67. Brandts, Jan; Korotov, Sergey; Křížek, Michal; Šolc, Jakub (2009), "On nonobtuse simplicial partitions", SIAM Review 51 (2): 317–335, doi:10.1137/060669073, Bibcode2009SIAMR..51..317B, https://pure.uva.nl/ws/files/836396/73198_315330.pdf, retrieved 2018-11-22 . See in particular Conjecture 23, p. 327.
  68. Arutyunyants, G.; Iosevich, A. (2004), "Falconer conjecture, spherical averages and discrete analogs", in Pach, János, Towards a Theory of Geometric Graphs, Contemp. Math., 342, Amer. Math. Soc., Providence, RI, pp. 15–24, doi:10.1090/conm/342/06127, ISBN 978-0-8218-3484-8 
  69. Matschke, Benjamin (2014), "A survey on the square peg problem", Notices of the American Mathematical Society 61 (4): 346–352, doi:10.1090/noti1100 
  70. Katz, Nets; Tao, Terence (2002), "Recent progress on the Kakeya conjecture", Publicacions Matemàtiques (Vol. Extra): 161–179, doi:10.5565/PUBLMAT_Esco02_07 
  71. Weaire, Denis, ed. (1997), The Kelvin Problem, CRC Press, p. 1, ISBN 978-0-7484-0632-6, https://books.google.com/books?id=otokU4KQnXIC&pg=PA1 
  72. Brass, Peter; Moser, William; Pach, János (2005), Research problems in discrete geometry, New York: Springer, p. 457, ISBN 978-0-387-29929-7, https://books.google.com/books?id=cT7TB20y3A8C&pg=PA457 
  73. Mahler, Kurt (1939). "Ein Minimalproblem für konvexe Polygone". Mathematica (Zutphen) B: 118–127. 
  74. Norwood, Rick; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", Discrete & Computational Geometry 7 (2): 153–162, doi:10.1007/BF02187832 
  75. Wagner, Neal R. (1976), "The Sofa Problem", The American Mathematical Monthly 83 (3): 188–189, doi:10.2307/2977022, http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf, retrieved 2014-05-14 
  76. Chai, Ying; Yuan, Liping; Zamfirescu, Tudor (June–July 2018), "Rupert Property of Archimedean Solids", The American Mathematical Monthly 125 (6): 497–504, doi:10.1080/00029890.2018.1449505 
  77. Steininger, Jakob; Yurkevich, Sergey (December 27, 2021), An algorithmic approach to Rupert's problem 
  78. Demaine, Erik D.; O'Rourke, Joseph (2007), "Chapter 22. Edge Unfolding of Polyhedra", Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, pp. 306–338 
  79. Ghomi, Mohammad (2018-01-01). "D "urer's Unfolding Problem for Convex Polyhedra". Notices of the American Mathematical Society 65 (1): 25–27. doi:10.1090/noti1609. ISSN 0002-9920. 
  80. Whyte, L. L. (1952), "Unique arrangements of points on a sphere", The American Mathematical Monthly 59 (9): 606–611, doi:10.2307/2306764 
  81. ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, http://www.openproblemgarden.org/op/convex_uniform_5_polytopes, retrieved 2016-10-04 .
  82. Pleanmani, Nopparat (2019), "Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph", Discrete Mathematics, Algorithms and Applications 11 (6): 1950068, 7, doi:10.1142/s179383091950068x 
  83. Baird, William; Bonato, Anthony (2012), "Meyniel's conjecture on the cop number: a survey", Journal of Combinatorics 3 (2): 225–238, doi:10.4310/JOC.2012.v3.n2.a6 
  84. Bousquet, Nicolas; Bartier, Valentin (2019), "Linear Transformations Between Colorings in Chordal Graphs", in Bender, Michael A.; Svensson, Ola; Herman, Grzegorz, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, LIPIcs, 144, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 24:1–24:15, doi:10.4230/LIPIcs.ESA.2019.24, ISBN 978-3-95977-124-5 
  85. "To the Moon and beyond", Graph Theory: Favorite Conjectures and Open Problems, II, Problem Books in Mathematics, Springer International Publishing, 2018, pp. 115–133, doi:10.1007/978-3-319-97686-0_11 
  86. Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters, 1998, pp. 97–99 .
  87. "Extending the Gyárfás-Sumner conjecture", Journal of Combinatorial Theory, Series B 105: 11–16, 2014, doi:10.1016/j.jctb.2013.11.002 
  88. Toft, Bjarne (1996), "A survey of Hadwiger's conjecture", Congressus Numerantium 115: 249–283 .
  89. Croft, Hallard T.; Falconer, Kenneth J. (1991), Unsolved Problems in Geometry, Springer-Verlag , Problem G10.
  90. Hägglund, Jonas; Steffen, Eckhard (2014), "Petersen-colorings and some families of snarks", Ars Mathematica Contemporanea 7 (1): 161–173, doi:10.26493/1855-3974.288.11a, http://amc-journal.eu/index.php/amc/article/viewFile/288/247, retrieved 2016-09-30 .
  91. Jensen, Tommy R.; Toft, Bjarne (1995), "12.20 List-Edge-Chromatic Numbers", Graph Coloring Problems, New York: Wiley-Interscience, pp. 201–202, ISBN 978-0-471-02865-9 .
  92. Molloy, Michael (1998), "A bound on the total chromatic number", Combinatorica 18 (2): 241–280, doi:10.1007/PL00009820 .
  93. Barát, János; Tóth, Géza (2010), "Towards the Albertson Conjecture", Electronic Journal of Combinatorics 17 (1): R73, doi:10.37236/345, Bibcode2009arXiv0909.0413B .
  94. Fulek, Radoslav; Pach, János (2011), "A computational approach to Conway's thrackle conjecture", Computational Geometry 44 (6–7): 345–355, doi:10.1016/j.comgeo.2011.02.001 .
  95. Gupta, Anupam; Newman, Ilan; Rabinovich, Yuri (2004), "Cuts, trees and [math]\displaystyle{ \ell_1 }[/math]-embeddings of graphs", Combinatorica 24 (2): 233–269, doi:10.1007/s00493-004-0015-x 
  96. Hartsfield, Nora; Ringel, Gerhard (2013), Pearls in Graph Theory: A Comprehensive Introduction, Dover Books on Mathematics, Courier Dover Publications, p. 247, ISBN 978-0-486-31552-2 .
  97. Hliněný, Petr (2010), "20 years of Negami's planar cover conjecture", Graphs and Combinatorics 26 (4): 525–536, doi:10.1007/s00373-010-0934-9, http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf, retrieved 2016-10-04 .
  98. Nöllenburg, Martin; Prutkin, Roman; Rutter, Ignaz (2016), "On self-approaching and increasing-chord drawings of 3-connected planar graphs", Journal of Computational Geometry 7 (1): 47–69, doi:10.20382/jocg.v7i1a3 
  99. Pach, János; Sharir, Micha (2009), "5.1 Crossings—the Brick Factory Problem", Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures, Mathematical Surveys and Monographs, 152, American Mathematical Society, pp. 126–127 .
  100. Demaine, E.; O'Rourke, J. (2002–2012), "Problem 45: Smallest Universal Set of Points for Planar Graphs", The Open Problems Project, http://cs.smith.edu/~orourke/TOPP/P45.html, retrieved 2013-03-19 .
  101. Conway, John H., Five $1,000 Problems (Update 2017), Online Encyclopedia of Integer Sequences, https://oeis.org/A248380/a248380.pdf, retrieved 2019-02-12 
  102. mdevos; Wood, David (December 7, 2019), "Jorgensen's Conjecture", Open Problem Garden, http://www.openproblemgarden.org/op/jorgensens_conjecture, retrieved 2016-11-13 .
  103. Ducey, Joshua E. (2017), "On the critical group of the missing Moore graph", Discrete Mathematics 340 (5): 1104–1109, doi:10.1016/j.disc.2016.10.001 
  104. Blokhuis, A. (1988), "Geodetic graphs of diameter two", Geometriae Dedicata 25 (1–3): 527–533, doi:10.1007/BF00191941 
  105. Florek, Jan (2010), "On Barnette's conjecture", Discrete Mathematics 310 (10–11): 1531–1535, doi:10.1016/j.disc.2010.01.018 .
  106. Broersma, Hajo; Patel, Viresh; Pyatkin, Artem (2014), "On toughness and Hamiltonicity of $2K_2$-free graphs", Journal of Graph Theory 75 (3): 244–255, doi:10.1002/jgt.21734, https://ris.utwente.nl/ws/files/6416631/jgt21734.pdf 
  107. Jaeger, F. (1985), "A survey of the cycle double cover conjecture", Annals of Discrete Mathematics 27 – Cycles in Graphs, North-Holland Mathematics Studies, 27, pp. 1–12, doi:10.1016/S0304-0208(08)72993-1, ISBN 978-0-444-87803-8 .
  108. Heckman, Christopher Carl; Krakovski, Roi (2013), "Erdös-Gyárfás conjecture for cubic planar graphs", Electronic Journal of Combinatorics 20 (2): P7, doi:10.37236/3252 .
  109. Chudnovsky, Maria (2014), "The Erdös–Hajnal conjecture—a survey", Journal of Graph Theory 75 (2): 178–190, doi:10.1002/jgt.21730, http://www.columbia.edu/~mc2775/EHsurvey.pdf, retrieved 2016-09-22 .
  110. "Covering and packing in graphs. IV. Linear arboricity", Networks 11 (1): 69–72, 1981, doi:10.1002/net.3230110108 .
  111. Babai, László (June 9, 1994). "Automorphism groups, isomorphism, reconstruction" (PostScript). Handbook of Combinatorics. http://newtraell.cs.uchicago.edu/files/tr_authentic/TR-94-10.ps. 
  112. Lenz, Hanfried; Ringel, Gerhard (1991), "A brief review on Egmont Köhler's mathematical work", Discrete Mathematics 97 (1–3): 3–16, doi:10.1016/0012-365X(91)90416-Y 
  113. Fomin, Fedor V.; Høie, Kjartan (2006), "Pathwidth of cubic graphs and exact algorithms", Information Processing Letters 97 (5): 191–196, doi:10.1016/j.ipl.2005.10.012 
  114. Schwenk, Allen (2012). "Some History on the Reconstruction Conjecture". Joint Mathematics Meetings. http://faculty.nps.edu/rgera/conjectures/jmm2012/Schwenk,%20%20Some%20History%20on%20the%20RC.pdf. Retrieved 2018-11-26. 
  115. Ramachandran, S. (1981), "On a new digraph reconstruction conjecture", Journal of Combinatorial Theory, Series B 31 (2): 143–149, doi:10.1016/S0095-8956(81)80019-6 
  116. "A proof of Sumner's universal tournament conjecture for large tournaments", Proceedings of the London Mathematical Society, Third Series 102 (4): 731–766, 2011, doi:10.1112/plms/pdq035 .
  117. Tuza, Zsolt (1990). "A conjecture on triangles of graphs". Graphs and Combinatorics 6 (4): 373–380. doi:10.1007/BF01787705. 
  118. Brešar, Boštjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; Klavžar, Sandi; Rall, Douglas F. (2012), "Vizing's conjecture: a survey and recent results", Journal of Graph Theory 69 (1): 46–76, doi:10.1002/jgt.20565 .
  119. 119.0 119.1 119.2 119.3 119.4 Kitaev, Sergey; Lozin, Vadim (2015). Words and Graphs. Monographs in Theoretical Computer Science. An EATCS Series. doi:10.1007/978-3-319-25859-1. ISBN 978-3-319-25857-7. https://link.springer.com/book/10.1007/978-3-319-25859-1. 
  120. 120.0 120.1 120.2 120.3 120.4 Kitaev, Sergey (2017-05-16). "A Comprehensive Introduction to the Theory of Word-Representable Graphs" (in en). International Conference on Developments in Language Theory. doi:10.1007/978-3-319-62809-7_2. 
  121. 121.0 121.1 121.2 121.3 121.4 Kitaev, S. V.; Pyatkin, A. V. (April 1, 2018). "Word-Representable Graphs: a Survey". Journal of Applied and Industrial Mathematics 12 (2): 278–296. doi:10.1134/S1990478918020084. 
  122. 122.0 122.1 122.2 122.3 122.4 Kitaev, Sergey V.; Pyatkin, Artem V. (2018). "Графы, представимые в виде слов. Обзор результатов" (in ru). Дискретн. анализ и исслед. опер. 25 (2): 19–53. doi:10.17377/daio.2018.25.588. http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=da&paperid=894&option_lang=rus. 
  123. Marc Elliot Glen (2016). "Colourability and word-representability of near-triangulations". arXiv:1605.01688 [math.CO].
  124. Kitaev, Sergey (2014-03-06). "On graphs with representation number 3". arXiv:1403.1616v1 [math.CO].
  125. Glen, Marc; Kitaev, Sergey; Pyatkin, Artem (2018). "On the representation number of a crown graph". Discrete Applied Mathematics 244: 89–93. doi:10.1016/j.dam.2018.03.013. https://www.sciencedirect.com/science/article/pii/S0166218X18301045. 
  126. Spinrad, Jeremy P. (2003), "2. Implicit graph representation", Efficient Graph Representations, American Mathematical Soc., pp. 17–30, ISBN 978-0-8218-2815-1, https://books.google.com/books?id=RrtXSKMAmWgC&pg=PA17 .
  127. "Seymour's 2nd Neighborhood Conjecture". https://faculty.math.illinois.edu/~west/openp/2ndnbhd.html. 
  128. mdevos (May 4, 2007). "5-flow conjecture". http://www.openproblemgarden.org/op/5_flow_conjecture. 
  129. mdevos (March 31, 2010). "4-flow conjecture". http://www.openproblemgarden.org/op/4_flow_conjecture. 
  130. Hrushovski, Ehud (1989). "Kueker's conjecture for stable theories". Journal of Symbolic Logic 54 (1): 207–220. doi:10.2307/2275025. 
  131. 131.0 131.1 131.2 Classification Theory. North-Holland. 1990. 
  132. Shelah, Saharon (2009). Classification theory for abstract elementary classes. College Publications. ISBN 978-1-904987-71-0. 
  133. Peretz, Assaf (2006). "Geometry of forking in simple theories". Journal of Symbolic Logic 71 (1): 347–359. doi:10.2178/jsl/1140641179. 
  134. Cherlin, Gregory; Shelah, Saharon (May 2007). "Universal graphs with a forbidden subtree". Journal of Combinatorial Theory. Series B 97 (3): 293–333. doi:10.1016/j.jctb.2006.05.008. 
  135. Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
  136. Shelah, Saharon (1999). "Borel sets with large squares". Fundamenta Mathematicae 159 (1): 1–50. doi:10.4064/fm-159-1-1-50. Bibcode1998math......2134S. 
  137. Baldwin, John T. (July 24, 2009). Categoricity. American Mathematical Society. ISBN 978-0-8218-4893-7. http://www.math.uic.edu/~jbaldwin/pub/AEClec.pdf. Retrieved February 20, 2014. 
  138. Shelah, Saharon (2009). "Introduction to classification theory for abstract elementary classes". arXiv:0903.3428 [math.LO].
  139. Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
  140. Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
  141. Keisler, HJ (1967). "Ultraproducts which are not saturated". J. Symb. Log. 32 (1): 23–46. doi:10.2307/2271240. 
  142. Malliaris, Maryanthe; Shelah, Saharon (10 August 2012). "A Dividing Line Within Simple Unstable Theories". arXiv:1208.2140 [math.LO]. Malliaris, M.; Shelah, S. (2012). "A Dividing Line within Simple Unstable Theories". arXiv:1208.2140 [math.LO].
  143. "Lectures on the Riemann zeta function (book review)", Bulletin of the American Mathematical Society 53 (3): 507–512, 2016, doi:10.1090/bull/1525 
  144. Singmaster, David (1971), "Research Problems: How often does an integer occur as a binomial coefficient?", American Mathematical Monthly 78 (4): 385–386, doi:10.2307/2316907 .
  145. Aigner, Martin (2013), Markov's theorem and 100 years of the uniqueness conjecture, Cham: Springer, doi:10.1007/978-3-319-00888-2, ISBN 978-3-319-00887-5 
  146. Guo, Song; Sun, Zhi-Wei (2005), "On odd covering systems with distinct moduli", Advances in Applied Mathematics 35 (2): 182–187, doi:10.1016/j.aam.2005.01.004 
  147. "Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key". http://www2.lbl.gov/Science-Articles/Archive/pi-random.html. 
  148. Robertson, John P. (1996-10-01). "Magic Squares of Squares". Mathematics Magazine 69 (4): 289–293. doi:10.1080/0025570X.1996.11996457. ISSN 0025-570X. 
  149. Huisman, Sander G. (2016). "Newer sums of three cubes". arXiv:1604.07746 [math.NT].
  150. Dobson, J. B. (1 April 2017), "On Lerch's formula for the Fermat quotient", p. 23, arXiv:1103.3907v6 [math.NT]
  151. Ribenboim, P. (2006) (in de). Die Welt der Primzahlen. Springer-Lehrbuch (2nd ed.). Springer. pp. 242–243. doi:10.1007/978-3-642-18079-8. ISBN 978-3-642-18078-1. https://books.google.com/books?id=XMyzh-2SClUC&q=die+folgenden+probleme+sind+ungel%C3%B6st&pg=PA242. 
  152. Mazur, Barry (1992), "The topology of rational points", Experimental Mathematics 1 (1): 35–45, doi:10.1080/10586458.1992.10504244, https://projecteuclid.org/euclid.em/1048709114, retrieved 2019-04-07 
  153. "Quadrisecants of knots and links", Journal of Knot Theory and Its Ramifications 3: 41–50, 1994, doi:10.1142/S021821659400006X 
  154. Burklund, Robert; Hahn, Jeremy; Levy, Ishan; Schlank, Tomer. "K-theoretic counterexamples to Ravenel's telescope conjecture". https://arxiv.org/abs/2310.17459. 
  155. Dimitrov, Vessilin; Gao, Ziyang; Habegger, Philipp (2021). "Uniformity in Mordell–Lang for curves". Annals of Mathematics 194: 237–298. doi:10.4007/annals.2021.194.1.4. https://hal.sorbonne-universite.fr/hal-03374335/file/Dimitrov%20et%20al.%20-%202021%20-%20Uniformity%20in%20Mordell%E2%80%93Lang%20for%20curves.pdf. 
  156. Guan, Qi'an; Zhou, Xiangyu (2015). "A solution of an [math]\displaystyle{ L^2 }[/math] extension problem with optimal estimate and applications". Annals of Mathematics 181 (3): 1139–1208. doi:10.4007/annals.2015.181.3.6. 
  157. Merel, Loïc (1996). ""Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]". Inventiones Mathematicae 124 (1): 437–449. doi:10.1007/s002220050059. Bibcode1996InMat.124..437M. 
  158. Cohen, Stephen D.; Fried, Michael D. (1995), "Lenstra's proof of the Carlitz–Wan conjecture on exceptional polynomials: an elementary version", Finite Fields and Their Applications 1 (3): 372–375, doi:10.1006/ffta.1995.1027 
  159. Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). "The Kadison-Singer problem in mathematics and engineering: A detailed account". in Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal. Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida. Contemporary Mathematics. 414. American Mathematical Society.. pp. 299–355. doi:10.1090/conm/414/07820. ISBN 978-0-8218-3923-2. https://books.google.com/books?id=9b-4uqEGJdoC&pg=PA299. Retrieved 24 April 2015. 
  160. Mackenzie, Dana. "Kadison–Singer Problem Solved". SIAM News (Society for Industrial and Applied Mathematics) (January/February 2014). https://www.siam.org/pdf/news/2123.pdf. 
  161. 161.0 161.1 Agol, Ian (2004). "Tameness of hyperbolic 3-manifolds". arXiv:math/0405568.
  162. Kurdyka, Krzysztof; Mostowski, Tadeusz; Parusiński, Adam (2000). "Proof of the gradient conjecture of R. Thom". Annals of Mathematics 152 (3): 763–792. doi:10.2307/2661354. 
  163. Moreira, Joel; Richter, Florian K.; Robertson, Donald (2019). "A proof of a sumset conjecture of Erdős" (in en-US). Annals of Mathematics 189 (2): 605–652. doi:10.4007/annals.2019.189.2.4. 
  164. Stanley, Richard P. (1994), "A survey of Eulerian posets", in Bisztriczky, T.; McMullen, P.; Schneider, R. et al., Polytopes: abstract, convex and computational (Scarborough, ON, 1993), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 440, Dordrecht: Kluwer Academic Publishers, pp. 301–333 . See in particular p. 316.
  165. Kalai, Gil (2018-12-25). "Amazing: Karim Adiprasito proved the g-conjecture for spheres!". https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/. 
  166. Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics 176 (1): 383–412. doi:10.4007/annals.2012.176.1.7. 
  167. Ziegler, Günter M. (2012). "Who solved the Hirsch conjecture?". Documenta Mathematica (Extra Volume "Optimization Stories"): 75–85. https://www.math.uni-bielefeld.de/documenta/vol-ismp/22_ziegler-guenter.html. 
  168. Kauers, Manuel; Koutschan, Christoph; Zeilberger, Doron (2009-07-14). "Proof of Ira Gessel's lattice path conjecture". Proceedings of the National Academy of Sciences 106 (28): 11502–11505. doi:10.1073/pnas.0901678106. ISSN 0027-8424. Bibcode2009PNAS..10611502K. 
  169. Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). "Herbert S. Wilf (1931–2012)". Notices of the AMS 62 (4): 358. doi:10.1090/noti1247. ISSN 1088-9477. OCLC 34550461. "The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004.". 
  170. Savchev, Svetoslav (2005). "Kemnitz' conjecture revisited". Discrete Mathematics 297 (1–3): 196–201. doi:10.1016/j.disc.2005.02.018. 
  171. Green, Ben (2004). "The Cameron–Erdős conjecture". The Bulletin of the London Mathematical Society 36 (6): 769–778. doi:10.1112/S0024609304003650. 
  172. "News from 2007". AMS. 31 December 2007. https://www.ams.org/news?news_id=155. "The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..."" 
  173. Brown, Aaron; Fisher, David; Hurtado, Sebastian (2017-10-07). "Zimmer's conjecture for actions of SL(𝑚,ℤ)". arXiv:1710.02735 [math.DS].
  174. Xue, Jinxin (2014). "Noncollision Singularities in a Planar Four-body Problem". arXiv:1409.0048 [math.DS].
  175. Xue, Jinxin (2020). "Non-collision singularities in a planar 4-body problem". Acta Mathematica 224 (2): 253–388. doi:10.4310/ACTA.2020.v224.n2.a2. 
  176. Bowditch, Brian H. (2006). "The angel game in the plane". School of Mathematics, University of Southampton: warwick.ac.uk Warwick University. http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf. 
  177. Kloster, Oddvar. "A Solution to the Angel Problem". Oslo, Norway: SINTEF ICT. http://home.broadpark.no/~oddvark/angel/Angel.pdf. 
  178. Mathe, Andras (2007). "The Angel of power 2 wins". Combinatorics, Probability and Computing 16 (3): 363–374. doi:10.1017/S0963548306008303. http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf. Retrieved 2016-03-18. 
  179. Gacs, Peter (June 19, 2007). "THE ANGEL WINS". http://www.cs.bu.edu/~gacs/papers/angel.pdf. 
  180. Larson, Eric (2017). "The Maximal Rank Conjecture". arXiv:1711.04906 [math.AG].
  181. Kerz, Moritz; Strunk, Florian; Tamme, Georg (2018), "Algebraic K-theory and descent for blow-ups", Inventiones Mathematicae 211 (2): 523–577, doi:10.1007/s00222-017-0752-2, Bibcode2018InMat.211..523K 
  182. Song, Antoine. "Existence of infinitely many minimal hypersurfaces in closed manifolds.". www.ams.org. https://www.ams.org/amsmtgs/2251_abstracts/1147-53-499.pdf. ""..I will present a solution of the conjecture, which builds on min-max methods developed by F. C. Marques and A. Neves.."" 
  183. "Antoine Song | Clay Mathematics Institute". https://www.claymath.org/people/antoine-song. ""...Building on work of Codá Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality"" 
  184. Wolchover, Natalie (July 11, 2017), "Pentagon Tiling Proof Solves Century-Old Math Problem", Quanta Magazine, https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/, retrieved July 18, 2017 
  185. Marques, Fernando C.; Neves, André (2013). "Min-max theory and the Willmore conjecture". Annals of Mathematics 179 (2): 683–782. doi:10.4007/annals.2014.179.2.6. 
  186. Guth, Larry; Katz, Nets Hawk (2015). "On the Erdos distinct distance problem in the plane". Annals of Mathematics 181 (1): 155–190. doi:10.4007/annals.2015.181.1.2. 
  187. Henle, Frederick V.; Henle, James M.. "Squaring the Plane". www.maa.org Mathematics Association of America. http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf. 
  188. Brock, Jeffrey F.; Canary, Richard D. (2012). "The classification of Kleinian surface groups, II: The Ending Lamination Conjecture". Annals of Mathematics 176 (1): 1–149. doi:10.4007/annals.2012.176.1.1. 
  189. "Straightening polygonal arcs and convexifying polygonal cycles", Discrete & Computational Geometry 30 (2): 205–239, 2003, doi:10.1007/s00454-003-0006-7, http://page.mi.fu-berlin.de/~rote/Papers/pdf/Straightening+polygonal+arcs+and+convexifying+polygonal+cycles-DCG.pdf 
  190. Faber, C.; Pandharipande, R. (2003), "Hodge integrals, partition matrices, and the [math]\displaystyle{ \lambda_g }[/math] conjecture", Ann. of Math., 2 157 (1): 97–124, doi:10.4007/annals.2003.157.97 
  191. Shestakov, Ivan P.; Umirbaev, Ualbai U. (2004). "The tame and the wild automorphisms of polynomial rings in three variables". Journal of the American Mathematical Society 17 (1): 197–227. doi:10.1090/S0894-0347-03-00440-5. 
  192. Hutchings, Michael; Morgan, Frank; Ritoré, Manuel; Ros, Antonio (2002). "Proof of the double bubble conjecture". Annals of Mathematics. Second Series 155 (2): 459–489. doi:10.2307/3062123. 
  193. "The Honeycomb Conjecture". Discrete & Computational Geometry 25: 1–22. 2001. doi:10.1007/s004540010071. 
  194. Teixidor i Bigas, Montserrat; Russo, Barbara (1999). "On a conjecture of Lange". Journal of Algebraic Geometry 8 (3): 483–496. ISSN 1056-3911. Bibcode1997alg.geom.10019R. 
  195. Ullmo, E (1998). "Positivité et Discrétion des Points Algébriques des Courbes". Annals of Mathematics 147 (1): 167–179. doi:10.2307/120987. 
  196. Zhang, S.-W. (1998). "Equidistribution of small points on abelian varieties". Annals of Mathematics 147 (1): 159–165. doi:10.2307/120986. 
  197. Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Dat Tat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor et al. (2017). "A formal proof of the Kepler conjecture". Forum of Mathematics, Pi 5: e2. doi:10.1017/fmp.2017.1. 
  198. Hales, Thomas C.; McLaughlin, Sean (2010). "The dodecahedral conjecture". Journal of the American Mathematical Society 23 (2): 299–344. doi:10.1090/S0894-0347-09-00647-X. Bibcode2010JAMS...23..299H. 
  199. Park, Jinyoung; Pham, Huy Tuan (2022-03-31). "A Proof of the Kahn-Kalai Conjecture". arXiv:2203.17207 [math.CO].
  200. "Stack-number is not bounded by queue-number". Combinatorica 42 (2): 151–164. August 2021. doi:10.1007/s00493-021-4585-7. 
  201. Huang, C.; Kotzig, A.; Rosa, A. (1982). "Further results on tree labellings". Utilitas Mathematica 21: 31–48. .
  202. Hartnett, Kevin (19 February 2020). "Rainbow Proof Shows Graphs Have Uniform Parts" (in en). https://www.quantamagazine.org/mathematicians-prove-ringels-graph-theory-conjecture-20200219/. 
  203. Shitov, Yaroslav (2019-09-01). "Counterexamples to Hedetniemi's conjecture". Annals of Mathematics 190 (2): 663–667. doi:10.4007/annals.2019.190.2.6. https://annals.math.princeton.edu/2019/190-2/p06. Retrieved 2021-07-19. 
  204. He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-11). "The Kelmans-Seymour conjecture I: Special separations". Journal of Combinatorial Theory, Series B 144: 197–224. doi:10.1016/j.jctb.2019.11.008. ISSN 0095-8956. http://www.sciencedirect.com/science/article/pii/S0095895619301224. 
  205. He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-11). "The Kelmans-Seymour conjecture II: 2-Vertices in K4−". Journal of Combinatorial Theory, Series B 144: 225–264. doi:10.1016/j.jctb.2019.11.007. ISSN 0095-8956. http://www.sciencedirect.com/science/article/pii/S0095895619301212. 
  206. He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-09). "The Kelmans-Seymour conjecture III: 3-vertices in K4−". Journal of Combinatorial Theory, Series B 144: 265–308. doi:10.1016/j.jctb.2019.11.006. ISSN 0095-8956. http://www.sciencedirect.com/science/article/pii/S0095895619301200. 
  207. He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-19). "The Kelmans-Seymour conjecture IV: A proof". Journal of Combinatorial Theory, Series B 144: 309–358. doi:10.1016/j.jctb.2019.12.002. ISSN 0095-8956. http://www.sciencedirect.com/science/article/pii/S0095895619301248. 
  208. Zang, Wenan; Jing, Guangming; Chen, Guantao (2019-01-29). "Proof of the Goldberg–Seymour Conjecture on Edge-Colorings of Multigraphs". arXiv:1901.10316v1 [math.CO].
  209. Abdollahi A., Zallaghi M. (2015). "Character sums for Cayley graphs". Communications in Algebra 43 (12): 5159–5167. doi:10.1080/00927872.2014.967398. 
  210. Huh, June (2012). "Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs". Journal of the American Mathematical Society 25 (3): 907–927. doi:10.1090/S0894-0347-2012-00731-0. 
  211. Chalopin, Jérémie; Gonçalves, Daniel (2009). "Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009". in Mitzenmacher, Michael. ACM. pp. 631–638. doi:10.1145/1536414.1536500. 
  212. "Menger's theorem for infinite graphs". Inventiones Mathematicae 176 (1): 1–62. 2009. doi:10.1007/s00222-008-0157-3. Bibcode2009InMat.176....1A. 
  213. Seigel-Itzkovich, Judy (2008-02-08). "Russian immigrant solves math puzzle". The Jerusalem Post. http://www.jpost.com/Home/Article.aspx?id=91431. 
  214. Diestel, Reinhard (2005). "Minors, Trees, and WQO". Graph Theory (Electronic Edition 2005 ed.). Springer. pp. 326–367. http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/preview/Ch12.pdf. 
  215. Chudnovsky, Maria; Robertson, Neil; Seymour, Paul; Thomas, Robin (2002). "The strong perfect graph theorem". Annals of Mathematics 164: 51–229. doi:10.4007/annals.2006.164.51. Bibcode2002math.....12070C. https://annals.math.princeton.edu/2006/164-1/p02. 
  216. Klin, M. H., M. Muzychuk and R. Poschel: The isomorphism problem for circulant graphs via Schur ring theory, Codes and Association Schemes, American Math. Society, 2001.
  217. Chen, Zhibo (1996). "Harary's conjectures on integral sum graphs". Discrete Mathematics 160 (1–3): 241–244. doi:10.1016/0012-365X(95)00163-Q. https://www.researchgate.net/publication/220188021. 
  218. Friedman, Joel (January 2015). "Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture: with an Appendix by Warren Dicks" (in en). Memoirs of the American Mathematical Society 233 (1100): 0. doi:10.1090/memo/1100. ISSN 0065-9266. https://www.cs.ubc.ca/~jf/pubs/web_stuff/shnc_memoirs.pdf. 
  219. Mineyev, Igor (2012). "Submultiplicativity and the Hanna Neumann conjecture". Annals of Mathematics. Second Series 175 (1): 393–414. doi:10.4007/annals.2012.175.1.11. 
  220. Namazi, Hossein; Souto, Juan (2012). "Non-realizability and ending laminations: Proof of the density conjecture". Acta Mathematica 209 (2): 323–395. doi:10.1007/s11511-012-0088-0. https://www.researchgate.net/publication/228365532. 
  221. Pila, Jonathan; Shankar, Ananth; Tsimerman, Jacob; Esnault, Hélène; Groechenig, Michael (2021-09-17). "Canonical Heights on Shimura Varieties and the André-Oort Conjecture". arXiv:2109.08788 [math.NT].
  222. Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three". Annals of Mathematics 184 (2): 633–682. doi:10.4007/annals.2016.184.2.7. Bibcode2015arXiv151201565B. 
  223. Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897 [math.NT].
  224. Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv:1205.5252 [math.NT].
  225. Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv:1312.7748 [math.NT].
  226. Zhang, Yitang (2014-05-01). "Bounded gaps between primes". Annals of Mathematics 179 (3): 1121–1174. doi:10.4007/annals.2014.179.3.7. ISSN 0003-486X. 
  227. "Bounded gaps between primes - Polymath Wiki". https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes. 
  228. Maynard, James (2015-01-01). "Small gaps between primes". Annals of Mathematics: 383–413. doi:10.4007/annals.2015.181.1.7. ISSN 0003-486X. 
  229. Cilleruelo, Javier (2010). "Generalized Sidon sets". Advances in Mathematics 225 (5): 2786–2807. doi:10.1016/j.aim.2010.05.010. 
  230. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae 178 (3): 485–504, doi:10.1007/s00222-009-0205-7, Bibcode2009InMat.178..485K 
  231. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae 178 (3): 505–586, doi:10.1007/s00222-009-0206-6, Bibcode2009InMat.178..505K 
  232. "2011 Cole Prize in Number Theory". Notices of the AMS 58 (4): 610–611. ISSN 1088-9477. OCLC 34550461. https://www.ams.org/notices/201104/rtx110400610p.pdf. Retrieved 2015-11-12. 
  233. "Bombieri and Tao Receive King Faisal Prize". Notices of the AMS 57 (5): 642–643. May 2010. ISSN 1088-9477. OCLC 34550461. https://www.ams.org/notices/201005/rtx100500642p.pdf. Retrieved 2016-03-18. "Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem.". 
  234. Metsänkylä, Tauno (5 September 2003). "Catalan's conjecture: another old diophantine problem solved". Bulletin of the American Mathematical Society 41 (1): 43–57. doi:10.1090/s0273-0979-03-00993-5. ISSN 0273-0979. https://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf. Retrieved 13 November 2015. "The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.". 
  235. Croot, Ernest S. III (2000). Unit Fractions. Ph.D. thesis. University of Georgia, Athens.  Croot, Ernest S. III (2003). "On a coloring conjecture about unit fractions". Annals of Mathematics 157 (2): 545–556. doi:10.4007/annals.2003.157.545. Bibcode2003math.....11421C. 
  236. Lafforgue, Laurent (1998), "Chtoucas de Drinfeld et applications" (in fr), Documenta Mathematica II: 563–570, ISSN 1431-0635, http://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html, retrieved 2016-03-18 
  237. Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem". Annals of Mathematics 141 (3): 443–551. doi:10.2307/2118559. OCLC 37032255. http://math.stanford.edu/~lekheng/flt/wiles.pdf. Retrieved 2016-03-06. 
  238. Taylor R, Wiles A (1995). "Ring theoretic properties of certain Hecke algebras". Annals of Mathematics 141 (3): 553–572. doi:10.2307/2118560. OCLC 37032255. http://www.math.harvard.edu/~rtaylor/hecke.ps. 
  239. Lee, Choongbum (2017). "Ramsey numbers of degenerate graphs". Annals of Mathematics 185 (3): 791–829. doi:10.4007/annals.2017.185.3.2. 
  240. Lamb, Evelyn (26 May 2016). "Two-hundred-terabyte maths proof is largest ever". Nature 534 (7605): 17–18. doi:10.1038/nature.2016.19990. PMID 27251254. Bibcode2016Natur.534...17L. 
  241. "Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer". Theory and Applications of Satisfiability Testing – SAT 2016. Lecture Notes in Computer Science. 9710. Springer, [Cham]. 2016. pp. 228–245. doi:10.1007/978-3-319-40970-2_15. ISBN 978-3-319-40969-6. 
  242. Linkletter, David (27 December 2019). "The 10 Biggest Math Breakthroughs of 2019". Popular Mechanics. https://www.popularmechanics.com/science/math/g30346822/biggest-math-breakthroughs-2019/. 
  243. Piccirillo, Lisa (2020). "The Conway knot is not slice". Annals of Mathematics 191 (2): 581–591. doi:10.4007/annals.2020.191.2.5. https://annals.math.princeton.edu/2020/191-2/p05. 
  244. Klarreich, Erica (2020-05-19). "Graduate Student Solves Decades-Old Conway Knot Problem" (in en). https://www.quantamagazine.org/graduate-student-solves-decades-old-conway-knot-problem-20200519/. 
  245. Agol, Ian (2013). "The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves, and Jason Manning)". Documenta Mathematica 18: 1045–1087. doi:10.4171/dm/421. https://www.math.uni-bielefeld.de/documenta/vol-18/33.pdf. 
  246. "Embedded minimal tori in [math]\displaystyle{ S^3 }[/math] and the Lawson conjecture". Acta Mathematica 211 (2): 177–190. 2013. doi:10.1007/s11511-013-0101-2. 
  247. "The good pants homology and the Ehrenpreis conjecture". Annals of Mathematics 182 (1): 1–72. 2015. doi:10.4007/annals.2015.182.1.1. 
  248. Austin, Tim (December 2013). "Rational group ring elements with kernels having irrational dimension". Proceedings of the London Mathematical Society 107 (6): 1424–1448. doi:10.1112/plms/pdt029. Bibcode2009arXiv0909.2360A. 
  249. Lurie, Jacob (2009). "On the classification of topological field theories". Current Developments in Mathematics 2008: 129–280. doi:10.4310/cdm.2008.v2008.n1.a3. Bibcode2009arXiv0905.0465L. 
  250. 250.0 250.1 "Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Archived from the original on March 22, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman.
  251. Morgan, John; Tian, Gang (2008). "Completion of the Proof of the Geometrization Conjecture". arXiv:0809.4040 [math.DG].
  252. "Nikiel's Conjecture". Topology and Its Applications 116 (3): 305–331. 2001. doi:10.1016/S0166-8641(01)00218-8. 
  253. Norio Iwase (1 November 1998). "Ganea's Conjecture on Lusternik-Schnirelmann Category". ResearchGate. https://www.researchgate.net/publication/220032558. 
  254. Tao, Terence (2015). "The Erdős discrepancy problem". arXiv:1509.05363v5 [math.CO].
  255. Duncan, John F. R.; Griffin, Michael J.; Ono, Ken (1 December 2015). "Proof of the umbral moonshine conjecture". Research in the Mathematical Sciences 2 (1): 26. doi:10.1186/s40687-015-0044-7. Bibcode2015arXiv150301472D. 
  256. Cheeger, Jeff; Naber, Aaron (2015). "Regularity of Einstein Manifolds and the Codimension 4 Conjecture". Annals of Mathematics 182 (3): 1093–1165. doi:10.4007/annals.2015.182.3.5. 
  257. Wolchover, Natalie (March 28, 2017). "A Long-Sought Proof, Found and Almost Lost". Quanta Magazine. https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/. Retrieved May 2, 2017. 
  258. Newman, Alantha; Nikolov, Aleksandar (2011). "A counterexample to Beck's conjecture on the discrepancy of three permutations". arXiv:1104.2922 [cs.DM].
  259. Voevodsky, Vladimir (1 July 2011). "On motivic cohomology with Z/l-coefficients". Princeton, NJ: Princeton University. pp. 401–438. https://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf. 
  260. Geisser, Thomas; Levine, Marc (2001). "The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky". Journal für die Reine und Angewandte Mathematik 2001 (530): 55–103. doi:10.1515/crll.2001.006. 
  261. Kahn, Bruno. "Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry". https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf. 
  262. "motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow". https://mathoverflow.net/q/87162. 
  263. Mattman, Thomas W.; Solis, Pablo (2009). "A proof of the Kauffman-Harary Conjecture". Algebraic & Geometric Topology 9 (4): 2027–2039. doi:10.2140/agt.2009.9.2027. Bibcode2009arXiv0906.1612M. 
  264. Kahn, Jeremy; Markovic, Vladimir (2012). "Immersing almost geodesic surfaces in a closed hyperbolic three manifold". Annals of Mathematics 175 (3): 1127–1190. doi:10.4007/annals.2012.175.3.4. 
  265. Lu, Zhiqin (September 2011). "Normal Scalar Curvature Conjecture and its applications". Journal of Functional Analysis 261 (5): 1284–1308. doi:10.1016/j.jfa.2011.05.002. 
  266. Dencker, Nils (2006), "The resolution of the Nirenberg–Treves conjecture", Annals of Mathematics 163 (2): 405–444, doi:10.4007/annals.2006.163.405, https://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf, retrieved 2019-04-07 
  267. "Research Awards". https://www.claymath.org/research. 
  268. Lewis, A. S.; Parrilo, P. A.; Ramana, M. V. (2005). "The Lax conjecture is true". Proceedings of the American Mathematical Society 133 (9): 2495–2499. doi:10.1090/S0002-9939-05-07752-X. 
  269. "Fields Medal – Ngô Bảo Châu". ICM. 19 August 2010. http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau. "Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods." 
  270. Voevodsky, Vladimir (2003). "Reduced power operations in motivic cohomology". Publications Mathématiques de l'IHÉS 98: 1–57. doi:10.1007/s10240-003-0009-z. http://archive.numdam.org/item/PMIHES_2003__98__1_0/. Retrieved 2016-03-18. 
  271. Baruch, Ehud Moshe (2003). "A proof of Kirillov's conjecture". Annals of Mathematics. Second Series 158 (1): 207–252. doi:10.4007/annals.2003.158.207. 
  272. Haas, Bertrand (2002). "A Simple Counterexample to Kouchnirenko's Conjecture". Beiträge zur Algebra und Geometrie 43 (1): 1–8. https://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf. Retrieved 2016-03-18. 
  273. Haiman, Mark (2001). "Hilbert schemes, polygraphs and the Macdonald positivity conjecture". Journal of the American Mathematical Society 14 (4): 941–1006. doi:10.1090/S0894-0347-01-00373-3. 
  274. Auscher, Pascal; Hofmann, Steve; Lacey, Michael; McIntosh, Alan; Tchamitchian, Ph. (2002). "The solution of the Kato square root problem for second order elliptic operators on [math]\displaystyle{ \mathbb{R}^n }[/math]". Annals of Mathematics. Second Series 156 (2): 633–654. doi:10.2307/3597201. 
  275. Barbieri-Viale, Luca; Rosenschon, Andreas; Saito, Morihiko (2003). "Deligne's Conjecture on 1-Motives". Annals of Mathematics 158 (2): 593–633. doi:10.4007/annals.2003.158.593. 
  276. Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001), "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society 14 (4): 843–939, doi:10.1090/S0894-0347-01-00370-8, ISSN 0894-0347 
  277. Luca, Florian (2000). "On a conjecture of Erdős and Stewart". Mathematics of Computation 70 (234): 893–897. doi:10.1090/s0025-5718-00-01178-9. Bibcode2001MaCom..70..893L. https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf. Retrieved 2016-03-18. 
  278. "The geometry of classical particles". Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer. Surveys in Differential Geometry. 7. Somerville, Massachusetts: International Press. 2000. pp. 1–15. doi:10.4310/SDG.2002.v7.n1.a1. 

Further reading

Books discussing problems solved since 1995

Books discussing unsolved problems

External links