Fully irreducible automorphism
In the mathematical subject geometric group theory, a fully irreducible automorphism of the free group Fn is an element of Out(Fn) which has no periodic conjugacy classes of proper free factors in Fn (where n > 1). Fully irreducible automorphisms are also referred to as "irreducible with irreducible powers" or "iwip" automorphisms. The notion of being fully irreducible provides a key Out(Fn) counterpart of the notion of a pseudo-Anosov element of the mapping class group of a finite type surface. Fully irreducibles play an important role in the study of structural properties of individual elements and of subgroups of Out(Fn).
Formal definition
Let [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] where [math]\displaystyle{ n\ge 2 }[/math]. Then [math]\displaystyle{ \varphi }[/math] is called fully irreducible[1] if there do not exist an integer [math]\displaystyle{ p\ne 0 }[/math] and a proper free factor [math]\displaystyle{ A }[/math] of [math]\displaystyle{ F_n }[/math] such that [math]\displaystyle{ \varphi^p([A])=[A] }[/math], where [math]\displaystyle{ [A] }[/math] is the conjugacy class of [math]\displaystyle{ A }[/math] in [math]\displaystyle{ F_n }[/math]. Here saying that [math]\displaystyle{ A }[/math] is a proper free factor of [math]\displaystyle{ F_n }[/math] means that [math]\displaystyle{ A\ne 1 }[/math] and there exists a subgroup [math]\displaystyle{ B\le F_n, B\ne 1 }[/math] such that [math]\displaystyle{ F_n=A\ast B }[/math].
Also, [math]\displaystyle{ \Phi\in \operatorname{Aut}(F_n) }[/math] is called fully irreducible if the outer automorphism class [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] of [math]\displaystyle{ \Phi }[/math] is fully irreducible.
Two fully irreducibles [math]\displaystyle{ \varphi,\psi\in \operatorname{Out}(F_n) }[/math] are called independent if [math]\displaystyle{ \langle \varphi\rangle \cap \langle \psi \rangle = \{1\} }[/math].
Relationship to irreducible automorphisms
The notion of being fully irreducible grew out of an older notion of an ``irreducible" outer automorphism of [math]\displaystyle{ F_n }[/math] originally introduced in.[2] An element [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math], where [math]\displaystyle{ n\ge 2 }[/math], is called irreducible if there does not exist a free product decomposition
- [math]\displaystyle{ F_n=A_1\ast\dots \ast A_k \ast C }[/math]
with [math]\displaystyle{ k\ge 1 }[/math], and with [math]\displaystyle{ A_i\ne 1, i=1,\dots k }[/math] being proper free factors of [math]\displaystyle{ F_n }[/math], such that [math]\displaystyle{ \varphi }[/math] permutes the conjugacy classes [math]\displaystyle{ [A_1], \dots, [A_k] }[/math].
Then [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] is fully irreducible in the sense of the definition above if and only if for every [math]\displaystyle{ p\ne 0 }[/math] [math]\displaystyle{ \varphi^p }[/math] is irreducible.
It is known that for any atoroidal [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] (that is, without periodic conjugacy classes of nontrivial elements of [math]\displaystyle{ F_n }[/math]), being irreducible is equivalent to being fully irreducible.[3] For non-atoroidal automorphisms, Bestvina and Handel[2] produce an example of an irreducible but not fully irreducible element of [math]\displaystyle{ \operatorname{Out}(F_n) }[/math], induced by a suitably chosen pseudo-Anosov homeomorphism of a surface with more than one boundary component.
Properties
- If [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] and [math]\displaystyle{ p\ne 0 }[/math] then [math]\displaystyle{ \varphi }[/math] is fully irreducible if and only if [math]\displaystyle{ \varphi^p }[/math] is fully irreducible.
- Every fully irreducible [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] can be represented by an expanding irreducible train track map.[2]
- Every fully irreducible [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] has exponential growth in [math]\displaystyle{ F_n }[/math] given by a stretch factor [math]\displaystyle{ \lambda=\lambda(\varphi)\gt 1 }[/math]. This stretch factor has the property that for every free basis [math]\displaystyle{ X }[/math] of [math]\displaystyle{ F_n }[/math] (and, more generally, for every point of the Culler–Vogtmann Outer space [math]\displaystyle{ X\in cv n }[/math]) and for every [math]\displaystyle{ 1\ne g\in F_n }[/math] one has:
- [math]\displaystyle{ \lim_{k\to\infty}\sqrt[k]{\|\varphi^k(g)\|_X}=\lambda. }[/math]
Moreover, [math]\displaystyle{ \lambda=\lambda(\varphi) }[/math] is equal to the Perron–Frobenius eigenvalue of the transition matrix of any train track representative of [math]\displaystyle{ \varphi }[/math].[2][4]
- Unlike for stretch factors of pseudo-Anosov surface homeomorphisms, it can happen that for a fully irreducible [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] one has [math]\displaystyle{ \lambda(\varphi)\ne \lambda(\varphi^{-1}) }[/math][5] and this behavior is believed to be generic. However, Handel and Mosher[6] proved that for every [math]\displaystyle{ n\ge 2 }[/math] there exists a finite constant [math]\displaystyle{ 0\lt C_n \lt \infty }[/math] such that for every fully irreducible [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math]
- [math]\displaystyle{ \frac{\log\lambda(\varphi) }{\log \lambda(\varphi^{-1})} \le C_n. }[/math]
- A fully irreducible [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] is non-atoroidal, that is, has a periodic conjugacy class of a nontrivial element of [math]\displaystyle{ F_n }[/math], if and only if [math]\displaystyle{ \varphi }[/math] is induced by a pseudo-Anosov homeomorphism of a compact connected surface with one boundary component and with the fundamental group isomorphic to [math]\displaystyle{ F_n }[/math].[2]
- A fully irreducible element [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] has exactly two fixed points in the Thurston compactification [math]\displaystyle{ \overline{CV}_n }[/math] of the projectivized Outer space [math]\displaystyle{ CV_n }[/math], and [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] acts on [math]\displaystyle{ \overline{CV}_n }[/math] with ``North-South" dynamics.[7]
- For a fully irreducible element [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math], its fixed points in [math]\displaystyle{ \overline{CV}_n }[/math] are projectivized [math]\displaystyle{ \mathbb R }[/math]-trees [math]\displaystyle{ [T_+(\varphi)], [T_-(\varphi)] }[/math], where [math]\displaystyle{ T_+(\varphi),T_-(\varphi)\in \overline{cv}_n }[/math], satisfying the property that [math]\displaystyle{ T_+(\varphi)\varphi=\lambda(\varphi) T_+(\varphi) }[/math] and [math]\displaystyle{ T_-(\varphi)\varphi^{-1}=\lambda(\varphi^{-1}) T_-(\varphi) }[/math].[8]
- A fully irreducible element [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] acts on the space of projectivized geodesic currents [math]\displaystyle{ \mathbb PCurr(F_n) }[/math] with either ``North-South" or ``generalized North-South" dynamics, depending on whether [math]\displaystyle{ \varphi }[/math] is atoroidal or non-atoroidal.[9][10]
- If [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] is fully irreducible, then the commensurator [math]\displaystyle{ Comm(\langle \varphi\rangle)\le \operatorname{Out}(F_n) }[/math] is virtually cyclic.[11] In particular, the centralizer and the normalizer of [math]\displaystyle{ \langle \varphi\rangle }[/math] in [math]\displaystyle{ \operatorname{Out}(F_n) }[/math] are virtually cyclic.
- If [math]\displaystyle{ \varphi,\psi\in \operatorname{Out}(F_n) }[/math] are independent fully irreducibles, then [math]\displaystyle{ [T_\pm(\varphi)], [T_\pm(\psi)]\in \overline{CV}_n }[/math] are four distinct points, and there exists [math]\displaystyle{ M\ge 1 }[/math] such that for every [math]\displaystyle{ p,q\ge M }[/math] the subgroup [math]\displaystyle{ \langle \varphi^p, \psi^q\rangle \le \operatorname{Out}(F_n) }[/math] is isomorphic to [math]\displaystyle{ F_2 }[/math].[8]
- If [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] is fully irreducible and [math]\displaystyle{ \varphi\in H\le \operatorname{Out}(F_n) }[/math], then either [math]\displaystyle{ H }[/math] is virtually cyclic or [math]\displaystyle{ H }[/math] contains a subgroup isomorphic to [math]\displaystyle{ F_2 }[/math].[8] [This statement provides a strong form of the Tits alternative for subgroups of [math]\displaystyle{ \operatorname{Out}(F_n) }[/math] containing fully irreducibles.]
- If [math]\displaystyle{ H\le \operatorname{Out}(F_n) }[/math] is an arbitrary subgroup, then either [math]\displaystyle{ H }[/math] contains a fully irreducible element, or there exist a finite index subgroup [math]\displaystyle{ H_0\le H }[/math] and a proper free factor [math]\displaystyle{ A }[/math] of [math]\displaystyle{ F_n }[/math] such that [math]\displaystyle{ H_0[A]=[A] }[/math].[12]
- An element [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] acts as a loxodromic isometry on the free factor complex [math]\displaystyle{ \mathcal{FF}_n }[/math] if and only if [math]\displaystyle{ \varphi }[/math] is fully irreducible.[13]
- It is known that ``random" (in the sense of random walks) elements of [math]\displaystyle{ \operatorname{Out}(F_n) }[/math] are fully irreducible. More precisely, if [math]\displaystyle{ \mu }[/math] is a measure on [math]\displaystyle{ \operatorname{Out}(F_n) }[/math] whose support generates a semigroup in [math]\displaystyle{ \operatorname{Out}(F_n) }[/math] containing some two independent fully irreducibles. Then for the random walk of length [math]\displaystyle{ k }[/math] on [math]\displaystyle{ \operatorname{Out}(F_n) }[/math] determined by [math]\displaystyle{ \mu }[/math], the probability that we obtain a fully irreducible element converges to 1 as [math]\displaystyle{ k\to \infty }[/math].[14]
- A fully irreducible element [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math] admits a (generally non-unique) periodic axis in the volume-one normalized Outer space [math]\displaystyle{ X_n }[/math], which is geodesic with respect to the asymmetric Lipschitz metric on [math]\displaystyle{ X_n }[/math] and possesses strong ``contraction"-type properties.[15] A related object, defined for an atoroidal fully irreducible [math]\displaystyle{ \varphi\in \operatorname{Out}(F_n) }[/math], is the axis bundle [math]\displaystyle{ A_\varphi\subseteq X_n }[/math], which is a certain [math]\displaystyle{ \varphi }[/math]-invariant closed subset proper homotopy equivalent to a line.[16]
References
- ↑ Thierry Coulbois and Arnaud Hilion, Botany of irreducible automorphisms of free groups, Pacific Journal of Mathematics 256 (2012), 291–307
- ↑ 2.0 2.1 2.2 2.3 2.4 Mladen Bestvina, and Michael Handel, Train tracks and automorphisms of free groups. Annals of Mathematics (2), vol. 135 (1992), no. 1, pp. 1–51
- ↑ Ilya Kapovich, Algorithmic detectability of iwip automorphisms. Bulletin of the London Mathematical Society 46 (2014), no. 2, 279–290.
- ↑ Oleg Bogopolski. Introduction to group theory. EMS Textbooks in Mathematics. European Mathematical Society, Zürich, 2008. ISBN:978-3-03719-041-8
- ↑ Michael Handel, and Lee Mosher, Parageometric outer automorphisms of free groups. Transactions of the American Mathematical Society 359 (2007), no. 7, 3153–3183
- ↑ Michael Handel, Lee Mosher, The expansion factors of an outer automorphism and its inverse. Transactions of the American Mathematical Society 359 (2007), no. 7, 3185–3208
- ↑ Levitt, Gilbert; Lustig, Martin (2008), "Automorphisms of free groups have asymptotically periodic dynamics", Journal für die reine und angewandte Mathematik 2008 (619): 1–36, doi:10.1515/CRELLE.2008.038
- ↑ 8.0 8.1 8.2 Mladen Bestvina, Mark Feighn and Michael Handel, Laminations, trees, and irreducible automorphisms of free groups. Geometric and Functional Analysis 7 (1997), 215–244.
- ↑ Caglar Uyanik, Dynamics of hyperbolic iwips. Conformal Geometry and Dynamics 18 (2014), 192–216.
- ↑ Caglar Uyanik, Generalized north-south dynamics on the space of geodesic currents. Geometriae Dedicata 177 (2015), 129–148.
- ↑ Ilya Kapovich, and Martin Lustig, Stabilizers of ℝ-trees with free isometric actions of FN. Journal of Group Theory 14 (2011), no. 5, 673–694.
- ↑ Camille Horbez, A short proof of Handel and Mosher's alternative for subgroups of Out(FN). Groups, Geometry, and Dynamics 10 (2016), no. 2, 709–721.
- ↑ Mladen Bestvina, and Mark Feighn, Hyperbolicity of the complex of free factors. Advances in Mathematics 256 (2014), 104–155.
- ↑ Joseph Maher and Giulio Tiozzo, Random walks on weakly hyperbolic groups, Journal für die reine und angewandte Mathematik, Ahead of print (Jan 2016); c.f. Theorem 1.4
- ↑ Yael Algom-Kfir, Strongly contracting geodesics in outer space. Geometry & Topology 15 (2011), no. 4, 2181–2233.
- ↑ Michael Handel, and Lee Mosher, Axes in outer space. Memoirs of the American Mathematical Society 213 (2011), no. 1004; ISBN:978-0-8218-6927-7.
Further reading
- Thierry Coulbois and Arnaud Hilion, Botany of irreducible automorphisms of free groups, Pacific Journal of Mathematics 256 (2012), 291–307.
- Karen Vogtmann, On the geometry of outer space. Bulletin of the American Mathematical Society 52 (2015), no. 1, 27–46.
Original source: https://en.wikipedia.org/wiki/Fully irreducible automorphism.
Read more |