Sheaf of modules
In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).
The standard case is when X is a scheme and O its structure sheaf. If O is the constant sheaf [math]\displaystyle{ \underline{\mathbf{Z}} }[/math], then a sheaf of O-modules is the same as a sheaf of abelian groups (i.e., an abelian sheaf).
If X is the prime spectrum of a ring R, then any R-module defines an OX-module (called an associated sheaf) in a natural way. Similarly, if R is a graded ring and X is the Proj of R, then any graded module defines an OX-module in a natural way. O-modules arising in such a fashion are examples of quasi-coherent sheaves, and in fact, on affine or projective schemes, all quasi-coherent sheaves are obtained this way.
Sheaves of modules over a ringed space form an abelian category.[1] Moreover, this category has enough injectives,[2] and consequently one can and does define the sheaf cohomology [math]\displaystyle{ \operatorname{H}^i(X, -) }[/math] as the i-th right derived functor of the global section functor [math]\displaystyle{ \Gamma(X, -) }[/math].[3]
Examples
- Given a ringed space (X, O), if F is an O-submodule of O, then it is called the sheaf of ideals or ideal sheaf of O, since for each open subset U of X, F(U) is an ideal of the ring O(U).
- Let X be a smooth variety of dimension n. Then the tangent sheaf of X is the dual of the cotangent sheaf [math]\displaystyle{ \Omega_X }[/math] and the canonical sheaf [math]\displaystyle{ \omega_X }[/math] is the n-th exterior power (determinant) of [math]\displaystyle{ \Omega_X }[/math].
- A sheaf of algebras is a sheaf of module that is also a sheaf of rings.
Operations
Let (X, O) be a ringed space. If F and G are O-modules, then their tensor product, denoted by
- [math]\displaystyle{ F \otimes_O G }[/math] or [math]\displaystyle{ F \otimes G }[/math],
is the O-module that is the sheaf associated to the presheaf [math]\displaystyle{ U \mapsto F(U) \otimes_{O(U)} G(U). }[/math] (To see that sheafification cannot be avoided, compute the global sections of [math]\displaystyle{ O(1) \otimes O(-1) = O }[/math] where O(1) is Serre's twisting sheaf on a projective space.)
Similarly, if F and G are O-modules, then
- [math]\displaystyle{ \mathcal{H}om_O(F, G) }[/math]
denotes the O-module that is the sheaf [math]\displaystyle{ U \mapsto \operatorname{Hom}_{O|_U}(F|_U, G|_U) }[/math].[4] In particular, the O-module
- [math]\displaystyle{ \mathcal{H}om_O(F, O) }[/math]
is called the dual module of F and is denoted by [math]\displaystyle{ \check F }[/math]. Note: for any O-modules E, F, there is a canonical homomorphism
- [math]\displaystyle{ \check{E} \otimes F \to \mathcal{H}om_O(E, F) }[/math],
which is an isomorphism if E is a locally free sheaf of finite rank. In particular, if L is locally free of rank one (such L is called an invertible sheaf or a line bundle),[5] then this reads:
- [math]\displaystyle{ \check{L} \otimes L \simeq O, }[/math]
implying the isomorphism classes of invertible sheaves form a group. This group is called the Picard group of X and is canonically identified with the first cohomology group [math]\displaystyle{ \operatorname{H}^1(X, \mathcal{O}^*) }[/math] (by the standard argument with Čech cohomology).
If E is a locally free sheaf of finite rank, then there is an O-linear map [math]\displaystyle{ \check{E} \otimes E \simeq \operatorname{End}_O(E) \to O }[/math] given by the pairing; it is called the trace map of E.
For any O-module F, the tensor algebra, exterior algebra and symmetric algebra of F are defined in the same way. For example, the k-th exterior power
- [math]\displaystyle{ \bigwedge^k F }[/math]
is the sheaf associated to the presheaf [math]\displaystyle{ U \mapsto \bigwedge^k_{O(U)} F(U) }[/math]. If F is locally free of rank n, then [math]\displaystyle{ \bigwedge^n F }[/math] is called the determinant line bundle (though technically invertible sheaf) of F, denoted by det(F). There is a natural perfect pairing:
- [math]\displaystyle{ \bigwedge^r F \otimes \bigwedge^{n-r} F \to \det(F). }[/math]
Let f: (X, O) →(X', O') be a morphism of ringed spaces. If F is an O-module, then the direct image sheaf [math]\displaystyle{ f_* F }[/math] is an O'-module through the natural map O' →f*O (such a natural map is part of the data of a morphism of ringed spaces.)
If G is an O'-module, then the module inverse image [math]\displaystyle{ f^* G }[/math] of G is the O-module given as the tensor product of modules:
- [math]\displaystyle{ f^{-1} G \otimes_{f^{-1} O'} O }[/math]
where [math]\displaystyle{ f^{-1} G }[/math] is the inverse image sheaf of G and [math]\displaystyle{ f^{-1} O' \to O }[/math] is obtained from [math]\displaystyle{ O' \to f_* O }[/math] by adjuction.
There is an adjoint relation between [math]\displaystyle{ f_* }[/math] and [math]\displaystyle{ f^* }[/math]: for any O-module F and O'-module G,
- [math]\displaystyle{ \operatorname{Hom}_{O}(f^* G, F) \simeq \operatorname{Hom}_{O'}(G, f_*F) }[/math]
as abelian group. There is also the projection formula: for an O-module F and a locally free O'-module E of finite rank,
- [math]\displaystyle{ f_*(F \otimes f^*E) \simeq f_* F \otimes E. }[/math]
Properties
Let (X, O) be a ringed space. An O-module F is said to be generated by global sections if there is a surjection of O-modules:
- [math]\displaystyle{ \bigoplus_{i \in I} O \to F \to 0. }[/math]
Explicitly, this means that there are global sections si of F such that the images of si in each stalk Fx generates Fx as Ox-module.
An example of such a sheaf is that associated in algebraic geometry to an R-module M, R being any commutative ring, on the spectrum of a ring Spec(R). Another example: according to Cartan's theorem A, any coherent sheaf on a Stein manifold is spanned by global sections. (cf. Serre's theorem A below.) In the theory of schemes, a related notion is ample line bundle. (For example, if L is an ample line bundle, some power of it is generated by global sections.)
An injective O-module is flasque (i.e., all restrictions maps F(U) → F(V) are surjective.)[6] Since a flasque sheaf is acyclic in the category of abelian sheaves, this implies that the i-th right derived functor of the global section functor [math]\displaystyle{ \Gamma(X, -) }[/math] in the category of O-modules coincides with the usual i-th sheaf cohomology in the category of abelian sheaves.[7]
Sheaf associated to a module
Let [math]\displaystyle{ M }[/math] be a module over a ring [math]\displaystyle{ A }[/math]. Put [math]\displaystyle{ X=\operatorname{Spec}(A) }[/math] and write [math]\displaystyle{ D(f) = \{ f \ne 0 \} = \operatorname{Spec}(A[f^{-1}]) }[/math]. For each pair [math]\displaystyle{ D(f) \subseteq D(g) }[/math], by the universal property of localization, there is a natural map
- [math]\displaystyle{ \rho_{g, f}: M[g^{-1}] \to M[f^{-1}] }[/math]
having the property that [math]\displaystyle{ \rho_{g, f} = \rho_{g, h} \circ \rho_{h, f} }[/math]. Then
- [math]\displaystyle{ D(f) \mapsto M[f^{-1}] }[/math]
is a contravariant functor from the category whose objects are the sets D(f) and morphisms the inclusions of sets to the category of abelian groups. One can show[8] it is in fact a B-sheaf (i.e., it satisfies the gluing axiom) and thus defines the sheaf [math]\displaystyle{ \widetilde{M} }[/math] on X called the sheaf associated to M.
The most basic example is the structure sheaf on X; i.e., [math]\displaystyle{ \mathcal{O}_X = \widetilde{A} }[/math]. Moreover, [math]\displaystyle{ \widetilde{M} }[/math] has the structure of [math]\displaystyle{ \mathcal{O}_X = \widetilde{A} }[/math]-module and thus one gets the exact functor [math]\displaystyle{ M \mapsto \widetilde{M} }[/math] from ModA, the category of modules over A to the category of modules over [math]\displaystyle{ \mathcal{O}_X }[/math]. It defines an equivalence from ModA to the category of quasi-coherent sheaves on X, with the inverse [math]\displaystyle{ \Gamma(X, -) }[/math], the global section functor. When X is Noetherian, the functor is an equivalence from the category of finitely generated A-modules to the category of coherent sheaves on X.
The construction has the following properties: for any A-modules M, N,
- [math]\displaystyle{ M[f^{-1}]^{\sim} = \widetilde{M}|_{D(f)} }[/math].[9]
- For any prime ideal p of A, [math]\displaystyle{ \widetilde{M}_p \simeq M_p }[/math] as Op = Ap-module.
- [math]\displaystyle{ (M \otimes_A N)^{\sim} \simeq \widetilde{M} \otimes_{\widetilde{A}} \widetilde{N} }[/math].[10]
- If M is finitely presented, [math]\displaystyle{ \operatorname{Hom}_A(M, N)^{\sim} \simeq \mathcal{H}om_{\widetilde{A}}(\widetilde{M}, \widetilde{N}) }[/math].[10]
- [math]\displaystyle{ \operatorname{Hom}_A(M, N) \simeq \Gamma(X, \mathcal{H}om_{\widetilde{A}}(\widetilde{M}, \widetilde{N})) }[/math], since the equivalence between ModA and the category of quasi-coherent sheaves on X.
- [math]\displaystyle{ (\varinjlim M_i)^{\sim} \simeq \varinjlim \widetilde{M_i} }[/math];[11] in particular, taking a direct sum and ~ commute.
Sheaf associated to a graded module
There is a graded analog of the construction and equivalence in the preceding section. Let R be a graded ring generated by degree-one elements as R0-algebra (R0 means the degree-zero piece) and M a graded R-module. Let X be the Proj of R (so X is a projective scheme if R is Noetherian). Then there is an O-module [math]\displaystyle{ \widetilde{M} }[/math] such that for any homogeneous element f of positive degree of R, there is a natural isomorphism
- [math]\displaystyle{ \widetilde{M}|_{\{f \ne 0\}} \simeq (M[f^{-1}]_0)^{\sim} }[/math]
as sheaves of modules on the affine scheme [math]\displaystyle{ \{f \ne 0\} = \operatorname{Spec}(R[f^{-1}]_0) }[/math];[12] in fact, this defines [math]\displaystyle{ \widetilde{M} }[/math] by gluing.
Example: Let R(1) be the graded R-module given by R(1)n = Rn+1. Then [math]\displaystyle{ O(1) = \widetilde{R(1)} }[/math] is called Serre's twisting sheaf, which is the dual of the tautological line bundle if R is finitely generated in degree-one.
If F is an O-module on X, then, writing [math]\displaystyle{ F(n) = F \otimes O(n) }[/math], there is a canonical homomorphism:
- [math]\displaystyle{ \left(\bigoplus_{n \ge 0} \Gamma(X, F(n))\right)^{\sim} \to F, }[/math]
which is an isomorphism if and only if F is quasi-coherent.
Computing sheaf cohomology
Sheaf cohomology has a reputation for being difficult to calculate. Because of this, the next general fact is fundamental for any practical computation:
Theorem — Let X be a topological space, F an abelian sheaf on it and [math]\displaystyle{ \mathfrak{U} }[/math] an open cover of X such that [math]\displaystyle{ \operatorname{H}^i(U_{i_0} \cap \cdots \cap U_{i_p}, F) = 0 }[/math] for any i, p and [math]\displaystyle{ U_{i_j} }[/math]'s in [math]\displaystyle{ \mathfrak{U} }[/math]. Then for any i,
- [math]\displaystyle{ \operatorname{H}^i(X, F) = \operatorname{H}^{i}(C^{\bullet}(\mathfrak{U}, F)) }[/math]
where the right-hand side is the i-th Čech cohomology.
Serre's vanishing theorem[13] states that if X is a projective variety and F a coherent sheaf on it, then, for sufficiently large n, the Serre twist F(n) is generated by finitely many global sections. Moreover,
- For each i, Hi(X, F) is finitely generated over R0, and
- There is an integer n0, depending on F, such that [math]\displaystyle{ \operatorname{H}^i(X, F(n)) = 0, \, i \ge 1, n \ge n_0. }[/math]
Sheaf extension
Let (X, O) be a ringed space, and let F, H be sheaves of O-modules on X. An extension of H by F is a short exact sequence of O-modules
- [math]\displaystyle{ 0 \rightarrow F \rightarrow G \rightarrow H \rightarrow 0. }[/math]
As with group extensions, if we fix F and H, then all equivalence classes of extensions of H by F form an abelian group (cf. Baer sum), which is isomorphic to the Ext group [math]\displaystyle{ \operatorname{Ext}_O^1(H,F) }[/math], where the identity element in [math]\displaystyle{ \operatorname{Ext}_O^1(H,F) }[/math] corresponds to the trivial extension.
In the case where H is O, we have: for any i ≥ 0,
- [math]\displaystyle{ \operatorname{H}^i(X, F) = \operatorname{Ext}_O^i(O,F), }[/math]
since both the sides are the right derived functors of the same functor [math]\displaystyle{ \Gamma(X, -) = \operatorname{Hom}_O(O, -). }[/math]
Note: Some authors, notably Hartshorne, drop the subscript O.
Assume X is a projective scheme over a Noetherian ring. Let F, G be coherent sheaves on X and i an integer. Then there exists n0 such that
- [math]\displaystyle{ \operatorname{Ext}_O^i(F, G(n)) = \Gamma(X, \mathcal{E}xt_O^i(F, G(n))), \, n \ge n_0 }[/math].[17]
Locally free resolutions
[math]\displaystyle{ \mathcal{Ext}(\mathcal{F},\mathcal{G}) }[/math] can be readily computed for any coherent sheaf [math]\displaystyle{ \mathcal{F} }[/math] using a locally free resolution:[18] given a complex
- [math]\displaystyle{ \cdots \to \mathcal{L}_2 \to \mathcal{L}_1 \to \mathcal{L}_0 \to \mathcal{F} \to 0 }[/math]
then
- [math]\displaystyle{ \mathcal{RHom}(\mathcal{F},\mathcal{G}) = \mathcal{Hom}(\mathcal{L}_\bullet,\mathcal{G}) }[/math]
hence
- [math]\displaystyle{ \mathcal{Ext}^k(\mathcal{F},\mathcal{G}) = h^k(\mathcal{Hom}(\mathcal{L}_\bullet,\mathcal{G})) }[/math]
Examples
Hypersurface
Consider a smooth hypersurface [math]\displaystyle{ X }[/math] of degree [math]\displaystyle{ d }[/math]. Then, we can compute a resolution
- [math]\displaystyle{ \mathcal{O}(-d) \to \mathcal{O} }[/math]
and find that
- [math]\displaystyle{ \mathcal{Ext}^i(\mathcal{O}_X,\mathcal{F}) = h^i(\mathcal{Hom}(\mathcal{O}(-d) \to \mathcal{O}, \mathcal{F})) }[/math]
Union of smooth complete intersections
Consider the scheme
- [math]\displaystyle{ X = \text{Proj}\left( \frac{\mathbb{C}[x_0,\ldots,x_n]}{(f)(g_1,g_2,g_3)} \right) \subseteq \mathbb{P}^n }[/math]
where [math]\displaystyle{ (f,g_1,g_2,g_3) }[/math] is a smooth complete intersection and [math]\displaystyle{ \deg(f) = d }[/math], [math]\displaystyle{ \deg(g_i) = e_i }[/math]. We have a complex
- [math]\displaystyle{ \mathcal{O}(-d-e_1-e_2-e_3) \xrightarrow{\begin{bmatrix} g_3 \\ -g_2 \\ -g_1 \end{bmatrix}} \begin{matrix} \mathcal{O}(-d-e_1-e_2) \\ \oplus \\ \mathcal{O}(-d-e_1-e_3) \\ \oplus \\ \mathcal{O}(-d-e_2-e_3) \end{matrix} \xrightarrow{\begin{bmatrix} g_2 & g_3 & 0 \\ -g_1 & 0 & -g_3 \\ 0 & -g_1 & g_2 \end{bmatrix}} \begin{matrix} \mathcal{O}(-d-e_1) \\ \oplus \\ \mathcal{O}(-d-e_2) \\ \oplus \\ \mathcal{O}(-d-e_3) \end{matrix} \xrightarrow{\begin{bmatrix} fg_1 & fg_2 & fg_3 \end{bmatrix}} \mathcal{O} }[/math]
resolving [math]\displaystyle{ \mathcal{O}_X, }[/math] which we can use to compute [math]\displaystyle{ \mathcal{Ext}^i(\mathcal{O}_X,\mathcal{F}) }[/math].
See also
- D-module (in place of O, one can also consider D, the sheaf of differential operators.)
- fractional ideal
- holomorphic vector bundle
- generic freeness
Notes
- ↑ Vakil, Math 216: Foundations of algebraic geometry, 2.5.
- ↑ Hartshorne, Ch. III, Proposition 2.2.
- ↑ This cohomology functor coincides with the right derived functor of the global section functor in the category of abelian sheaves; cf. Hartshorne, Ch. III, Proposition 2.6.
- ↑ There is a canonical homomorphism:
- [math]\displaystyle{ \mathcal{H}om_O(F, O)_x \to \operatorname{Hom}_{O_x} (F_x, O_x), }[/math]
- ↑ For coherent sheaves, having a tensor inverse is the same as being locally free of rank one; in fact, there is the following fact: if [math]\displaystyle{ F \otimes G \simeq O }[/math] and if F is coherent, then F, G are locally free of rank one. (cf. EGA, Ch 0, 5.4.3.)
- ↑ Hartshorne, Ch III, Lemma 2.4.
- ↑ see also: https://math.stackexchange.com/q/447234
- ↑ Hartshorne, Ch. II, Proposition 5.1.
- ↑ EGA I, Ch. I, Proposition 1.3.6.
- ↑ 10.0 10.1 EGA I, Ch. I, Corollaire 1.3.12.
- ↑ EGA I, Ch. I, Corollaire 1.3.9.
- ↑ Hartshorne, Ch. II, Proposition 5.11.
- ↑ "Section 30.2 (01X8): Čech cohomology of quasi-coherent sheaves—The Stacks project". https://stacks.math.columbia.edu/tag/01X8.
- ↑ Costa, Miró-Roig & Pons-Llopis 2021, Theorem 1.3.1
- ↑ "Links with sheaf cohomology". Local Cohomology. 2012. pp. 438–479. doi:10.1017/CBO9781139044059.023. ISBN 9780521513630.
- ↑ Serre 1955, §.66 Faisceaux algébriques cohérents sur les variétés projectives.
- ↑ Hartshorne, Ch. III, Proposition 6.9.
- ↑ Hartshorne, Robin. Algebraic Geometry. pp. 233–235.
References
- Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS 4. doi:10.1007/bf02684778. http://www.numdam.org/item/PMIHES_1960__4__5_0.
- Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9
- Costa, Laura; Miró-Roig, Rosa María; Pons-Llopis, Joan (2021). Ulrich Bundles. doi:10.1515/9783110647686. ISBN 9783110647686. https://books.google.com/books?id=v9IuEAAAQBAJ&pg=PT22.
- "Links with sheaf cohomology". Local Cohomology. 2012. pp. 438–479. doi:10.1017/CBO9781139044059.023. ISBN 9780521513630.
- "Faisceaux algébriques cohérents (§.66 Faisceaux algébriques cohérents sur les variétés projectives.)", Annals of Mathematics 61 (2): 197–278, 1955, doi:10.2307/1969915, https://www.college-de-france.fr/media/jean-pierre-serre/UPL5435398796951750634_Serre_FAC.pdf
Original source: https://en.wikipedia.org/wiki/Sheaf of modules.
Read more |