Chentsov's theorem
From HandWiki
In information geometry, Chentsov's theorem states that the Fisher information metric is, up to rescaling, the unique Riemannian metric on a statistical manifold that is invariant under sufficient statistics.
See also
- Fisher information
- Sufficient statistic
- Information geometry
References
- N. N. Čencov (1981), Statistical Decision Rules and Optimal Inference, Translations of mathematical monographs; v. 53, American Mathematical Society, http://www.ams.org/books/mmono/053/
- Shun'ichi Amari, Hiroshi Nagaoka (2000) Methods of information geometry, Translations of mathematical monographs; v. 191, American Mathematical Society, http://www.ams.org/books/mmono/191/ (Theorem 2.6)
- Dowty, James G. (2018). "Chentsov's theorem for exponential families". Information Geometry 1 (1): 117-135. doi:10.1007/s41884-018-0006-4.
- Fujiwara, Akio (2022). "Hommage to Chentsov’s theorem". Info. Geo.. doi:10.1007/s41884-022-00077-7.
Original source: https://en.wikipedia.org/wiki/Chentsov's theorem.
Read more |