Semantic analysis (machine learning)

From HandWiki
Revision as of 19:01, 6 February 2024 by S.Timg (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In machine learning, semantic analysis of a corpus is the task of building structures that approximate concepts from a large set of documents. It generally does not involve prior semantic understanding of the documents. A metalanguage based on predicate logic can analyze the speech of humans.[1]:93- Another strategy to understand the semantics of a text is symbol grounding. If language is grounded, it is equal to recognizing a machine readable meaning. For the restricted domain of spatial analysis, a computer based language understanding system was demonstrated.[2]:123

Latent semantic analysis (sometimes latent semantic indexing), is a class of techniques where documents are represented as vectors in term space. A prominent example is PLSI.

Latent Dirichlet allocation involves attributing document terms to topics.

n-grams and hidden Markov models work by representing the term stream as a Markov chain where each term is derived from the few terms before it.

See also

References