Hermite transform
From HandWiki
In mathematics, Hermite transform is an integral transform named after the mathematician Charles Hermite, which uses Hermite polynomials [math]\displaystyle{ H_n(x) }[/math] as kernels of the transform. This was first introduced by Lokenath Debnath in 1964.[1][2][3][4] The Hermite transform of a function [math]\displaystyle{ F(x) }[/math] is [math]\displaystyle{ H\{F(x)\} = f_H(n) = \int_{-\infty}^\infty e^{-x^2} \ H_n(x)\ F(x) \ dx }[/math]
The inverse Hermite transform is given by [math]\displaystyle{ H^{-1}\{f_H(n)\} = F(x) = \sum_{n=0}^\infty \frac{1}{\sqrt\pi 2^n n!} f_H(n) H_n(x) }[/math]
Some Hermite transform pairs
[math]\displaystyle{ F(x)\, }[/math] | [math]\displaystyle{ f_H(n)\, }[/math] |
---|---|
[math]\displaystyle{ x^m }[/math] | [math]\displaystyle{ \begin{cases} \frac{m!\sqrt{\pi} }{2^{m-n} \left(\frac{m-n}{2}\right)!}, & (m-n)\text{ even and} \geq0 \\ 0, & \text{otherwise} \end{cases} }[/math][5] |
[math]\displaystyle{ e^{ax}\, }[/math] | [math]\displaystyle{ \sqrt\pi a^n e^{a^2/4}\, }[/math] |
[math]\displaystyle{ e^{2xt-t^2}, \ |t|\lt \frac{1}{2}\, }[/math] | [math]\displaystyle{ \sqrt\pi (2t)^n }[/math] |
[math]\displaystyle{ H_m(x)\, }[/math] | [math]\displaystyle{ \sqrt\pi 2^n n!\delta_{nm}\, }[/math] |
[math]\displaystyle{ x^2H_m(x)\, }[/math] | [math]\displaystyle{ 2^n n! \sqrt{\pi}\begin{cases} 1 , & n=m+2 \\ \left(n+\frac{1}{2}\right), & n=m \\ (n+1)(n+2),& n=m-2 \\ 0, & \text{otherwise}\end{cases} }[/math] |
[math]\displaystyle{ e^{-x^2}H_m(x)\, }[/math] | [math]\displaystyle{ \left(-1\right)^{p-m} 2^{p-1/2} \Gamma(p+1/2),\ m+n=2p,\ p\in\mathbb{Z} }[/math] |
[math]\displaystyle{ H_m^2(x)\, }[/math] | [math]\displaystyle{ \begin{cases} 2^{m+n/2}\sqrt\pi \binom m{n/2}\frac{m!n!}{(n/2)!}, & n\text{ even and}\leq 2m \\ 0, & \text{otherwise} \end{cases} }[/math][6] |
[math]\displaystyle{ H_m(x)H_p(x)\, }[/math] | [math]\displaystyle{ \begin{cases} \frac{2^k\sqrt\pi m!n!p!}{(k-m)!(k-n)!(k-p)!} , & n+m+p=2k,\ k\in\mathbb{Z};\ |m-p|\leq n\leq m+p\\ 0 , & \text{otherwise} \end{cases}\, }[/math][7] |
[math]\displaystyle{ H_{n+p+q}(x)H_p(x)H_q(x)\, }[/math] | [math]\displaystyle{ \sqrt\pi 2^{n+p+q} (n+p+q)!\, }[/math] |
[math]\displaystyle{ \frac{d^m}{dx^m}F(x)\, }[/math] | [math]\displaystyle{ f_H(n+m)\, }[/math] |
[math]\displaystyle{ x\frac{d^m}{dx^m}F(x)\, }[/math] | [math]\displaystyle{ nf_H(n+m-1)+\frac{1}{2}f_H(n+m+1)\, }[/math] |
[math]\displaystyle{ e^{x^2}\frac{d}{dx}\left[e^{-x^2}\frac{d}{dx}F(x)\right]\, }[/math] | [math]\displaystyle{ -2nf_H(n)\, }[/math] |
[math]\displaystyle{ F(x - x_0) }[/math] | [math]\displaystyle{ \sqrt{\pi}\sum^\infty_{k=0}\frac{(-x_0)^k}{k!}f_H(n+k) }[/math] |
[math]\displaystyle{ F(x)*G(x)\, }[/math] | [math]\displaystyle{ \sqrt\pi(-1)^n\left[2^{2n+1}\Gamma \left(n+\frac{3}{2}\right)\right]^{-1}f_H(n) g_H(n)\, }[/math][8] |
[math]\displaystyle{ e^{z^2} \sin(x z), \ |z|\lt \frac 12\ \, }[/math] | [math]\displaystyle{ \begin{cases} \sqrt\pi (-1)^{\lfloor\frac{n}{2}\rfloor}(2z)^{n} , & n\,\mathrm{odd}\\ 0 , & n\,\mathrm{even} \end{cases}\, }[/math] |
[math]\displaystyle{ (1-z^2)^{-1/2} \exp\left[\frac{2xyz-(x^2+y^2)z^2}{(1-z^2)}\right]\, }[/math] | [math]\displaystyle{ \sqrt\pi z^n H_n(y) }[/math][9][10] |
[math]\displaystyle{ \frac{H_m(y)H_{m+1}(x)-H_m(x)H_{m+1}(y)}{2^{m+1}m!(x-y)} }[/math] | [math]\displaystyle{ \begin{cases}\sqrt{\pi}H_n(y) & n \leq m\\ 0 & n \gt m \end{cases} }[/math] |
References
- ↑ Debnath, L. (1964). "On Hermite transform". Matematički Vesnik 1 (30): 285–292.
- ↑ Debnath; Lokenath; Bhatta, Dambaru (2014). Integral transforms and their applications. CRC Press. ISBN 9781482223576.
- ↑ Debnath, L. (1968). "Some operational properties of Hermite transform". Matematički Vesnik 5 (43): 29–36.
- ↑ Dimovski, I. H.; Kalla, S. L. (1988). "Convolution for Hermite transforms". Math. Japonica 33: 345–351.
- ↑ McCully, Joseph Courtney; Churchill, Ruel Vance (1953) (in en-US), Hermite and Laguerre integral transforms : preliminary report, http://deepblue.lib.umich.edu/handle/2027.42/6521
- ↑ Feldheim, Ervin (1938). "Quelques nouvelles relations pour les polynomes d'Hermite" (in fr). Journal of the London Mathematical Society s1-13: 22–29. doi:10.1112/jlms/s1-13.1.22.
- ↑ Bailey, W. N. (1939). "On Hermite polynomials and associated Legendre functions". Journal of the London Mathematical Society s1-14 (4): 281–286. doi:10.1112/jlms/s1-14.4.281.
- ↑ Glaeske, Hans-Jürgen (1983). "On a convolution structure of a generalized Hermite transformation". Serdica Bulgariacae Mathematicae Publicationes 9 (2): 223–229. http://www.math.bas.bg/serdica/1983/1983-223-229.pdf.
- ↑ Erdélyi et al. 1955, p. 194, 10.13 (22).
- ↑ Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung" (in de), Journal für die Reine und Angewandte Mathematik (66): 161–176, ERAM 066.1720cj, ISSN 0075-4102, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002152975. See p. 174, eq. (18) and p. 173, eq. (13).
Sources
- Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1955), Higher transcendental functions, II, McGraw-Hill, ISBN 978-0-07-019546-2, http://apps.nrbook.com/bateman/Vol2.pdf
Original source: https://en.wikipedia.org/wiki/Hermite transform.
Read more |