Regular estimator

From HandWiki
Revision as of 21:25, 6 February 2024 by Pchauhan2001 (talk | contribs) (url)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Class of statistical estimators

Regular estimators are a class of statistical estimators that satisfy certain regularity conditions which make them amenable to asymptotic analysis. The convergence of a regular estimator's distribution is, in a sense, locally uniform. This is often considered desirable and leads to the convenient property that a small change in the parameter does not dramatically change the distribution of the estimator.[1]

Definition

An estimator [math]\displaystyle{ \hat{\theta}_n }[/math] of [math]\displaystyle{ \psi(\theta) }[/math] based on a sample of size [math]\displaystyle{ n }[/math] is said to be regular if for every [math]\displaystyle{ h }[/math]:[1]

[math]\displaystyle{ \sqrt n \left ( \theta_n - \psi (\theta + h/\sqrt n) \right ) \stackrel{\theta+h/\sqrt n} {\rightarrow} L_\theta }[/math]

where the convergence is in distribution under the law of [math]\displaystyle{ \theta + h/\sqrt n }[/math].

Examples of non-regular estimators

Both the Hodges' estimator[1] and the James-Stein estimator[2] are non-regular estimators when the population parameter [math]\displaystyle{ \theta }[/math] is exactly 0.

See also

References

  1. 1.0 1.1 1.2 Vaart AW van der. Asymptotic Statistics. Cambridge University Press; 1998.
  2. Beran, R. (1995). THE ROLE OF HAJEK'S CONVOLUTION THEOREM IN STATISTICAL THEORY