Quadratic set
In mathematics, a quadratic set is a set of points in a projective space that bears the same essential incidence properties as a quadric (conic section in a projective plane, sphere or cone or hyperboloid in a projective space).
Definition of a quadratic set
Let [math]\displaystyle{ \mathfrak P=({\mathcal P},{\mathcal G},\in) }[/math] be a projective space. A quadratic set is a non-empty subset [math]\displaystyle{ {\mathcal Q} }[/math] of [math]\displaystyle{ {\mathcal P} }[/math] for which the following two conditions hold:
- (QS1) Every line [math]\displaystyle{ g }[/math] of [math]\displaystyle{ {\mathcal G} }[/math] intersects [math]\displaystyle{ {\mathcal Q} }[/math] in at most two points or is contained in [math]\displaystyle{ {\mathcal Q} }[/math].
- ([math]\displaystyle{ g }[/math] is called exterior to [math]\displaystyle{ {\mathcal Q} }[/math] if [math]\displaystyle{ |g\cap {\mathcal Q}|=0 }[/math], tangent to [math]\displaystyle{ {\mathcal Q} }[/math] if either [math]\displaystyle{ |g\cap {\mathcal Q}|=1 }[/math] or [math]\displaystyle{ g\cap {\mathcal Q}=g }[/math], and secant to [math]\displaystyle{ {\mathcal Q} }[/math] if [math]\displaystyle{ |g\cap {\mathcal Q}|=2 }[/math].)
- (QS2) For any point [math]\displaystyle{ P\in {\mathcal Q} }[/math] the union [math]\displaystyle{ {\mathcal Q}_P }[/math] of all tangent lines through [math]\displaystyle{ P }[/math] is a hyperplane or the entire space [math]\displaystyle{ {\mathcal P} }[/math].
A quadratic set [math]\displaystyle{ {\mathcal Q} }[/math] is called non-degenerate if for every point [math]\displaystyle{ P\in {\mathcal Q} }[/math], the set [math]\displaystyle{ {\mathcal Q}_P }[/math] is a hyperplane.
A Pappian projective space is a projective space in which Pappus's hexagon theorem holds.
The following result, due to Francis Buekenhout, is an astonishing statement for finite projective spaces.
- Theorem: Let be [math]\displaystyle{ \mathfrak P_n }[/math] a finite projective space of dimension [math]\displaystyle{ n\ge 3 }[/math] and [math]\displaystyle{ {\mathcal Q} }[/math] a non-degenerate quadratic set that contains lines. Then: [math]\displaystyle{ \mathfrak P_n }[/math] is Pappian and [math]\displaystyle{ {\mathcal Q} }[/math] is a quadric with index [math]\displaystyle{ \ge 2 }[/math].
Definition of an oval and an ovoid
Ovals and ovoids are special quadratic sets:
Let [math]\displaystyle{ \mathfrak P }[/math] be a projective space of dimension [math]\displaystyle{ \ge 2 }[/math]. A non-degenerate quadratic set [math]\displaystyle{ \mathcal O }[/math] that does not contain lines is called ovoid (or oval in plane case).
The following equivalent definition of an oval/ovoid are more common:
Definition: (oval) A non-empty point set [math]\displaystyle{ \mathfrak o }[/math] of a projective plane is called oval if the following properties are fulfilled:
- (o1) Any line meets [math]\displaystyle{ \mathfrak o }[/math] in at most two points.
- (o2) For any point [math]\displaystyle{ P }[/math] in [math]\displaystyle{ \mathfrak o }[/math] there is one and only one line [math]\displaystyle{ g }[/math] such that [math]\displaystyle{ g\cap \mathfrak o=\{P\} }[/math].
A line [math]\displaystyle{ g }[/math] is a exterior or tangent or secant line of the oval if [math]\displaystyle{ |g\cap \mathfrak o|=0 }[/math] or [math]\displaystyle{ |g\cap \mathfrak o|=1 }[/math] or [math]\displaystyle{ |g\cap \mathfrak o|=2 }[/math] respectively.
For finite planes the following theorem provides a more simple definition.
Theorem: (oval in finite plane) Let be [math]\displaystyle{ \mathfrak P }[/math] a projective plane of order [math]\displaystyle{ n }[/math]. A set [math]\displaystyle{ \mathfrak o }[/math] of points is an oval if [math]\displaystyle{ |\mathfrak o|=n+1 }[/math] and if no three points of [math]\displaystyle{ \mathfrak o }[/math] are collinear.
According to this theorem of Beniamino Segre, for Pappian projective planes of odd order the ovals are just conics:
Theorem: Let be [math]\displaystyle{ \mathfrak P }[/math] a Pappian projective plane of odd order. Any oval in [math]\displaystyle{ \mathfrak P }[/math] is an oval conic (non-degenerate quadric).
Definition: (ovoid) A non-empty point set [math]\displaystyle{ \mathcal O }[/math] of a projective space is called ovoid if the following properties are fulfilled:
- (O1) Any line meets [math]\displaystyle{ \mathcal O }[/math] in at most two points.
- ([math]\displaystyle{ g }[/math] is called exterior, tangent and secant line if [math]\displaystyle{ |g\cap {\mathcal O}|=0, \ |g\cap {\mathcal O}|=1 }[/math] and [math]\displaystyle{ |g\cap {\mathcal O}|=2 }[/math] respectively.)
- (O2) For any point [math]\displaystyle{ P\in {\mathcal O} }[/math] the union [math]\displaystyle{ {\mathcal O}_P }[/math] of all tangent lines through [math]\displaystyle{ P }[/math] is a hyperplane (tangent plane at [math]\displaystyle{ P }[/math]).
Example:
- a) Any sphere (quadric of index 1) is an ovoid.
- b) In case of real projective spaces one can construct ovoids by combining halves of suitable ellipsoids such that they are no quadrics.
For finite projective spaces of dimension [math]\displaystyle{ n }[/math] over a field [math]\displaystyle{ K }[/math] we have:
Theorem:
- a) In case of [math]\displaystyle{ |K| \lt \infty }[/math] an ovoid in [math]\displaystyle{ \mathfrak P_n(K) }[/math] exists only if [math]\displaystyle{ n=2 }[/math] or [math]\displaystyle{ n=3 }[/math].
- b) In case of [math]\displaystyle{ |K| \lt \infty,\ \operatorname{char} K \ne 2 }[/math] an ovoid in [math]\displaystyle{ \mathfrak P_n(K) }[/math] is a quadric.
Counterexamples (Tits–Suzuki ovoid) show that i.g. statement b) of the theorem above is not true for [math]\displaystyle{ \operatorname{char} K=2 }[/math]:
References
- Albrecht Beutelspacher & Ute Rosenbaum (1998) Projective Geometry : from foundations to applications, Chapter 4: Quadratic Sets, pages 137 to 179, Cambridge University Press ISBN:978-0521482776
- F. Buekenhout (ed.) (1995) Handbook of Incidence Geometry, Elsevier ISBN:0-444-88355-X
- P. Dembowski (1968) Finite Geometries, Springer-Verlag ISBN:3-540-61786-8, p. 48
External links
- Eric Hartmann Lecture Note Planar Circle Geometries, an Introduction to Moebius-, Laguerre- and Minkowski Planes, from Technische Universität Darmstadt
Original source: https://en.wikipedia.org/wiki/Quadratic set.
Read more |